# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys import numpy as np import joblib import torch import torchaudio import glob import numpy as np import torch import torch.multiprocessing as mp import torchaudio import joblib import librosa import threading import math import numpy as np import itertools from tqdm import tqdm from pathlib import Path import random import os import sys LOGGING_INTERVAL = 10 OFFSET = 0 NUM_THREADS = 16 BATCH_SIZE = 1 class ApplyKmeans(object): def __init__(self, km_path): self.km_model = joblib.load(km_path) self.C_np = self.km_model.cluster_centers_.transpose() self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True) self.C = torch.from_numpy(self.C_np) self.Cnorm = torch.from_numpy(self.Cnorm_np) if torch.cuda.is_available(): self.C = self.C.cuda() self.Cnorm = self.Cnorm.cuda() def __call__(self, x): if isinstance(x, torch.Tensor): dist = ( x.pow(2).sum(1, keepdim=True) - 2 * torch.matmul(x, self.C) + self.Cnorm ) return dist.argmin(dim=1).cpu().numpy() else: dist = ( (x ** 2).sum(1, keepdims=True) - 2 * np.matmul(x, self.C_np) + self.Cnorm_np ) return np.argmin(dist, axis=1) INPUT_DIR = sys.argv[1] FEATURE_OUTPUT_DIR = Path(sys.argv[2]) os.makedirs(FEATURE_OUTPUT_DIR, exist_ok=True) def inference(rank, queue: mp.Queue): apply_kmeans = ApplyKmeans("km_xlsr_1024_18l") while True: paths = queue.get() if paths is None: break file_path = paths[0] file_name = os.path.basename(file_path) try: feat = np.load(file_path) km_feat = apply_kmeans(feat) np.save(FEATURE_OUTPUT_DIR / f"{file_name}", km_feat) # [:length, :]) except Exception as e: print(e) raise #print(f"{e} in {paths} with longest length of {max(lengths)}") def setInterval(interval): def decorator(function): def wrapper(*args, **kwargs): stopped = threading.Event() def loop(): # executed in another thread while not stopped.wait(interval): # until stopped function(*args, **kwargs) t = threading.Thread(target=loop) t.daemon = True # stop if the program exits t.start() return stopped return wrapper return decorator last_batches = None @setInterval(LOGGING_INTERVAL) def QueueWatcher(queue): global last_batches curr_batches = queue.qsize() print( f"Remain: {curr_batches} batches [ {(last_batches-curr_batches)/LOGGING_INTERVAL} batches/s ]" ) last_batches = curr_batches if __name__ == "__main__": mp.set_start_method('spawn',force=True) FEATURE_OUTPUT_DIR.mkdir(exist_ok=True) gpu_num = torch.cuda.device_count() print(f"Running with {NUM_THREADS} threads and batchsize {BATCH_SIZE}") processes = [] queue = mp.Queue() for thread_num in range(NUM_THREADS): #rank = thread_num % gpu_num p = mp.Process(target=inference, args=(thread_num, queue)) p.start() processes.append(p) accum = [] tmp_file = [] # path_list = [] # for scp in glob.glob(os.path.join(INPUT_DIR, '*.lst')): # tmp = [x.split('\t')[0] for x in open(scp).readlines()] # print(len(tmp)) # path_list = list(set(path_list) | set(tmp)) # print(len(path_list)) if os.path.isfile(INPUT_DIR): path_list = [x.strip() for x in open(INPUT_DIR).readlines()] else: #path_list = glob.glob(os.path.join(INPUT_DIR, '*.wav')) path_list = [os.path.join(INPUT_DIR, x) for x in os.listdir(INPUT_DIR)] # for file in tqdm(INPUT_DIR.glob("**/*.wav")): for file in tqdm(path_list): file = Path(file) # if not input_guard(file): # continue accum.append(file) if len(accum) == BATCH_SIZE: queue.put(accum.copy()) accum.clear() # tmp_file.append(file.as_posix()+'\n') for _ in range(NUM_THREADS): queue.put(None) last_batches = queue.qsize() queue_watcher = QueueWatcher(queue) for p in processes: p.join() queue_watcher.set() #f_w = open(FILE_LIST,'a') #f_w.writelines(tmp_file) #f_w.close()