audio: chunk_size: 264600 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.000 model: sources: ['vocals', 'other'] audio_channels: 2 # dims: [4, 32, 64, 128] # small version dims: [4, 64, 128, 256] nfft: 4096 hop_size: 1024 win_size: 4096 normalized: True band_configs: { 'low': { 'SR': .175, 'stride': 1, 'kernel': 3 }, 'mid': { 'SR': .392, 'stride': 4, 'kernel': 4 }, 'high': { 'SR': .433, 'stride': 16, 'kernel': 16 } } conv_depths: [3, 2, 1] compress: 4 conv_kernel: 3 # Dual-path RNN num_dplayer: 6 expand: 1 # mamba use_mamba: False mamba_config: { 'd_stat': 16, 'd_conv': 4, 'd_expand': 2 } training: batch_size: 4 gradient_accumulation_steps: 2 grad_clip: 0 instruments: - vocals - other lr: 5.0e-04 patience: 2 reduce_factor: 0.95 target_instrument: null num_epochs: 1000 num_steps: 1000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adam other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true augmentations: enable: true # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3) mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02) - 0.2 - 0.02 mixup_loudness_min: 0.5 mixup_loudness_max: 1.5 inference: batch_size: 8 dim_t: 256 num_overlap: 4