import sys import os #from tqdm import tqdm import torch import torch.multiprocessing as mp import threading #import librosa #import numpy as np from faster_whisper import WhisperModel #import whisper import glob import fcntl import argparse import traceback from tqdm import tqdm import numpy as np import librosa import soxr import multiprocessing def normalize_audio(y, target_dbfs=0): max_amplitude = np.max(np.abs(y)) if max_amplitude < 0.1: return y target_amplitude = 10.0**(target_dbfs / 20.0) scale_factor = target_amplitude / max_amplitude normalized_audio = y * scale_factor return normalized_audio file_lock = multiprocessing.Lock() def inference(rank, ckpt_path, text_path, queue: mp.Queue): device = f"cuda" model = WhisperModel(ckpt_path, device=device, device_index=rank, compute_type="float16") puncs = list(",.?!") buffer = "" def write_to_file(data): with file_lock: with open(text_path, 'a') as f: f.write(data) with torch.no_grad(): while True: #print(texts) filename = queue.get() if filename is None: write_to_file(buffer) break filename = filename[0] try: audio_path = filename audio, sr = librosa.load(audio_path, sr=None) audio = normalize_audio(audio, -6) audio = soxr.resample( audio, sr, 16000 ) segments, info = model.transcribe(audio, beam_size=3, vad_filter=True, condition_on_previous_text=False) text = "" for segment in segments: text_segment = segment.text text_segment.strip() if len(text_segment) == 0: continue if not text_segment[-1] in puncs: text_segment += "," text = text + " " + text_segment text = text.replace(" ", " ") text = text.strip() if len(text) == 0: continue if text[-1] == ",": text = text[:-1] + "." buffer += f"{filename}|{text}|{info.language}|{info.language_probability}\n" if len(buffer) > 10000: write_to_file(buffer) buffer = "" except Exception as e: print(filename) traceback.print_exc() def setInterval(interval): def decorator(function): def wrapper(*args, **kwargs): stopped = threading.Event() def loop(): # executed in another thread while not stopped.wait(interval): # until stopped function(*args, **kwargs) t = threading.Thread(target=loop) t.daemon = True # stop if the program exits t.start() return stopped return wrapper return decorator last_batches = None @setInterval(5) def QueueWatcher(queue, bar): global last_batches curr_batches = queue.qsize() bar.update(last_batches-curr_batches) last_batches = curr_batches if __name__ == "__main__": #audio_dir = sys.argv[1] parser = argparse.ArgumentParser() parser.add_argument("--filelist_or_dir", type=str, required=True) parser.add_argument("--text_path", type=str, required=True, help="Dir to save output") parser.add_argument("--jobs", type=int, required=False, default=2, help="Path to save checkpoints") parser.add_argument("--ckpt_path", type=str, required=False, default="large-v3") parser.add_argument("--log_dir", type=str, required=False, default="large-v3", help="For aml compability") parser.add_argument("--model_dir", type=str, required=False, default="large-v3", help="For aml compability") args = parser.parse_args() mp.set_start_method('spawn',force=True) filelist_or_dir = args.filelist_or_dir text_path = args.text_path jobs = args.jobs ckpt_path = args.ckpt_path os.makedirs(text_path, exist_ok=True) model = WhisperModel(ckpt_path, device='cpu') # download model in one thread del(model) if os.path.isfile(filelist_or_dir): filelist_name = filelist_or_dir.split('/')[-1].split('.')[0] generator = open(filelist_or_dir).read().splitlines() text_path = os.path.join(text_path, f"{filelist_name}_text.txt") else: filelist_name = "single" generator = glob.glob(f"{filelist_or_dir}/*.wav") text_path = os.path.join(text_path, "text.txt") os.system(f"rm {text_path}") gpu_num = torch.cuda.device_count() processes = [] queue = mp.Queue() for thread_num in range(jobs): rank = thread_num % gpu_num p = mp.Process(target=inference, args=(rank, ckpt_path, text_path, queue)) p.start() processes.append(p) accum = [] tmp_file = [] for filename in generator: accum.append(filename) if len(accum) == 1: queue.put(accum.copy()) accum.clear() for _ in range(jobs): queue.put(None) last_batches = queue.qsize() bar = tqdm(total=last_batches, desc='whisper') queue_watcher = QueueWatcher(queue, bar) for p in processes: p.join() queue_watcher.set()