# coding: utf-8 __author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' __version__ = '1.0.3' import random import argparse import time import copy from tqdm import tqdm import sys import os import glob import torch import soundfile as sf import numpy as np import auraloss import torch.nn as nn from torch.optim import Adam, AdamW, SGD from torch.utils.data import DataLoader from torch.cuda.amp.grad_scaler import GradScaler from torch.optim.lr_scheduler import ReduceLROnPlateau import torch.nn.functional as F from dataset import MSSDataset from utils import demix_track, demix_track_demucs, sdr, get_model_from_config import warnings warnings.filterwarnings("ignore") def masked_loss(y_, y, q, coarse=True): # shape = [num_sources, batch_size, num_channels, chunk_size] loss = torch.nn.MSELoss(reduction='none')(y_, y).transpose(0, 1) if coarse: loss = torch.mean(loss, dim=(-1, -2)) loss = loss.reshape(loss.shape[0], -1) L = loss.detach() quantile = torch.quantile(L, q, interpolation='linear', dim=1, keepdim=True) mask = L < quantile return (loss * mask).mean() def manual_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # if multi-GPU torch.backends.cudnn.deterministic = True os.environ["PYTHONHASHSEED"] = str(seed) def load_not_compatible_weights(model, weights, verbose=False): new_model = model.state_dict() old_model = torch.load(weights) if 'state' in old_model: # Fix for htdemucs weights loading old_model = old_model['state'] for el in new_model: if el in old_model: if verbose: print('Match found for {}!'.format(el)) if new_model[el].shape == old_model[el].shape: if verbose: print('Action: Just copy weights!') new_model[el] = old_model[el] else: if len(new_model[el].shape) != len(old_model[el].shape): if verbose: print('Action: Different dimension! Too lazy to write the code... Skip it') else: if verbose: print('Shape is different: {} != {}'.format(tuple(new_model[el].shape), tuple(old_model[el].shape))) ln = len(new_model[el].shape) max_shape = [] slices_old = [] slices_new = [] for i in range(ln): max_shape.append(max(new_model[el].shape[i], old_model[el].shape[i])) slices_old.append(slice(0, old_model[el].shape[i])) slices_new.append(slice(0, new_model[el].shape[i])) # print(max_shape) # print(slices_old, slices_new) slices_old = tuple(slices_old) slices_new = tuple(slices_new) max_matrix = np.zeros(max_shape, dtype=np.float32) for i in range(ln): max_matrix[slices_old] = old_model[el].cpu().numpy() max_matrix = torch.from_numpy(max_matrix) new_model[el] = max_matrix[slices_new] else: if verbose: print('Match not found for {}!'.format(el)) model.load_state_dict( new_model ) def valid(model, args, config, device, verbose=False): # For multiGPU extract single model if len(args.device_ids) > 1: model = model.module model.eval() all_mixtures_path = [] for valid_path in args.valid_path: part = sorted(glob.glob(valid_path + '/*/mixture.wav')) if len(part) == 0: print('No validation data found in: {}'.format(valid_path)) all_mixtures_path += part if verbose: print('Total mixtures: {}'.format(len(all_mixtures_path))) instruments = config.training.instruments if config.training.target_instrument is not None: instruments = [config.training.target_instrument] all_sdr = dict() for instr in config.training.instruments: all_sdr[instr] = [] if not verbose: all_mixtures_path = tqdm(all_mixtures_path) pbar_dict = {} for path in all_mixtures_path: mix, sr = sf.read(path) folder = os.path.dirname(path) if verbose: print('Song: {}'.format(os.path.basename(folder))) mixture = torch.tensor(mix.T, dtype=torch.float32) if args.model_type == 'htdemucs': res = demix_track_demucs(config, model, mixture, device) else: res = demix_track(config, model, mixture, device) for instr in instruments: if instr != 'other' or config.training.other_fix is False: track, sr1 = sf.read(folder + '/{}.wav'.format(instr)) else: # other is actually instrumental track, sr1 = sf.read(folder + '/{}.wav'.format('vocals')) track = mix - track # sf.write("{}.wav".format(instr), res[instr].T, sr, subtype='FLOAT') references = np.expand_dims(track, axis=0) estimates = np.expand_dims(res[instr].T, axis=0) sdr_val = sdr(references, estimates)[0] if verbose: print(instr, res[instr].shape, sdr_val) all_sdr[instr].append(sdr_val) pbar_dict['sdr_{}'.format(instr)] = sdr_val if not verbose: all_mixtures_path.set_postfix(pbar_dict) sdr_avg = 0.0 for instr in instruments: sdr_val = np.array(all_sdr[instr]).mean() print("Instr SDR {}: {:.4f}".format(instr, sdr_val)) sdr_avg += sdr_val sdr_avg /= len(instruments) if len(instruments) > 1: print('SDR Avg: {:.4f}'.format(sdr_avg)) return sdr_avg def proc_list_of_files( mixture_paths, model, args, config, device, verbose=False, ): instruments = config.training.instruments if config.training.target_instrument is not None: instruments = [config.training.target_instrument] all_sdr = dict() for instr in config.training.instruments: all_sdr[instr] = [] for path in mixture_paths: mix, sr = sf.read(path) folder = os.path.dirname(path) folder_name = os.path.abspath(folder) if verbose: print('Song: {}'.format(folder_name)) mixture = torch.tensor(mix.T, dtype=torch.float32) if args.model_type == 'htdemucs': res = demix_track_demucs(config, model, mixture, device) else: res = demix_track(config, model, mixture, device) if 1: pbar_dict = {} for instr in instruments: if instr != 'other' or config.training.other_fix is False: try: track, sr1 = sf.read(folder + '/{}.wav'.format(instr)) except Exception as e: # print('No data for stem: {}. Skip!'.format(instr)) continue else: # other is actually instrumental track, sr1 = sf.read(folder + '/{}.wav'.format('vocals')) track = mix - track references = np.expand_dims(track, axis=0) estimates = np.expand_dims(res[instr].T, axis=0) sdr_val = sdr(references, estimates)[0] if verbose: print(instr, res[instr].shape, sdr_val) all_sdr[instr].append(sdr_val) pbar_dict['sdr_{}'.format(instr)] = sdr_val try: mixture_paths.set_postfix(pbar_dict) except Exception as e: pass return all_sdr def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict): m1 = model # m1 = copy.deepcopy(m1) m1 = m1.eval().to(device) if proc_id == 0: progress_bar = tqdm(total=len(all_mixtures_path)) all_sdr = dict() for instr in config.training.instruments: all_sdr[instr] = [] while True: current_step, path = queue.get() if path is None: # check for sentinel value break sdr_single = proc_list_of_files([path], m1, args, config, device, False) pbar_dict = {} for instr in config.training.instruments: all_sdr[instr] += sdr_single[instr] if len(sdr_single[instr]) > 0: pbar_dict['sdr_{}'.format(instr)] = "{:.4f}".format(sdr_single[instr][0]) if proc_id == 0: progress_bar.update(current_step - progress_bar.n) progress_bar.set_postfix(pbar_dict) # print(f"Inference on process {proc_id}", all_sdr) return_dict[proc_id] = all_sdr return def valid_multi_gpu(model, args, config, verbose=False): device_ids = args.device_ids model = model.to('cpu') # For multiGPU extract single model if len(device_ids) > 1: model = model.module all_mixtures_path = [] for valid_path in args.valid_path: part = sorted(glob.glob(valid_path + '/*/mixture.wav')) if len(part) == 0: print('No validation data found in: {}'.format(valid_path)) all_mixtures_path += part model = model.to('cpu') torch.cuda.empty_cache() queue = torch.multiprocessing.Queue() processes = [] return_dict = torch.multiprocessing.Manager().dict() for i, device in enumerate(device_ids): if torch.cuda.is_available(): device = 'cuda:{}'.format(device) else: device = 'cpu' p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict)) p.start() processes.append(p) for i, path in enumerate(all_mixtures_path): queue.put((i, path)) for _ in range(len(device_ids)): queue.put((None, None)) # sentinel value to signal subprocesses to exit for p in processes: p.join() # wait for all subprocesses to finish all_sdr = dict() for instr in config.training.instruments: all_sdr[instr] = [] for i in range(len(device_ids)): all_sdr[instr] += return_dict[i][instr] instruments = config.training.instruments if config.training.target_instrument is not None: instruments = [config.training.target_instrument] sdr_avg = 0.0 for instr in instruments: sdr_val = np.array(all_sdr[instr]).mean() print("Instr SDR {}: {:.4f}".format(instr, sdr_val)) sdr_avg += sdr_val sdr_avg /= len(instruments) if len(instruments) > 1: print('SDR Avg: {:.4f}'.format(sdr_avg)) return sdr_avg def train_model(args): parser = argparse.ArgumentParser() parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit") parser.add_argument("--config_path", type=str, help="path to config file") parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to start training") parser.add_argument("--results_path", type=str, help="path to folder where results will be stored (weights, metadata)") parser.add_argument("--data_path", nargs="+", type=str, help="Dataset data paths. You can provide several folders.") parser.add_argument("--dataset_type", type=int, default=1, help="Dataset type. Must be one of: 1, 2, 3 or 4. Details here: https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md") parser.add_argument("--valid_path", nargs="+", type=str, help="validation data paths. You can provide several folders.") parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers") parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory") parser.add_argument("--seed", type=int, default=0, help="random seed") parser.add_argument("--device_ids", nargs='+', type=int, default=[0], help='list of gpu ids') parser.add_argument("--use_multistft_loss", action='store_true', help="Use MultiSTFT Loss (from auraloss package)") parser.add_argument("--use_mse_loss", action='store_true', help="Use default MSE loss") parser.add_argument("--use_l1_loss", action='store_true', help="Use L1 loss") if args is None: args = parser.parse_args() else: args = parser.parse_args(args) manual_seed(args.seed + int(time.time())) torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False # Fix possible slow down with dilation convolutions torch.multiprocessing.set_start_method('spawn') model, config = get_model_from_config(args.model_type, args.config_path) print("Instruments: {}".format(config.training.instruments)) if not os.path.isdir(args.results_path): os.mkdir(args.results_path) use_amp = True try: use_amp = config.training.use_amp except: pass device_ids = args.device_ids batch_size = config.training.batch_size * len(device_ids) trainset = MSSDataset( config, args.data_path, batch_size=batch_size, metadata_path=os.path.join(args.results_path, 'metadata_{}.pkl'.format(args.dataset_type)), dataset_type=args.dataset_type, ) train_loader = DataLoader( trainset, batch_size=batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=args.pin_memory ) if args.start_check_point != '': print('Start from checkpoint: {}'.format(args.start_check_point)) if 1: load_not_compatible_weights(model, args.start_check_point, verbose=False) else: model.load_state_dict( torch.load(args.start_check_point) ) if torch.cuda.is_available(): if len(device_ids) <= 1: print('Use single GPU: {}'.format(device_ids)) device = torch.device(f'cuda:{device_ids[0]}') model = model.to(device) else: print('Use multi GPU: {}'.format(device_ids)) device = torch.device(f'cuda:{device_ids[0]}') model = nn.DataParallel(model, device_ids=device_ids).to(device) else: device = 'cpu' print('CUDA is not avilable. Run training on CPU. It will be very slow...') model = model.to(device) if 0: valid_multi_gpu(model, args, config, verbose=True) if config.training.optimizer == 'adam': optimizer = Adam(model.parameters(), lr=config.training.lr) elif config.training.optimizer == 'adamw': optimizer = AdamW(model.parameters(), lr=config.training.lr) elif config.training.optimizer == 'sgd': print('Use SGD optimizer') optimizer = SGD(model.parameters(), lr=config.training.lr, momentum=0.999) else: print('Unknown optimizer: {}'.format(config.training.optimizer)) exit() gradient_accumulation_steps = 1 try: gradient_accumulation_steps = int(config.training.gradient_accumulation_steps) except: pass print("Patience: {} Reduce factor: {} Batch size: {} Grad accum steps: {} Effective batch size: {}".format( config.training.patience, config.training.reduce_factor, batch_size, gradient_accumulation_steps, batch_size * gradient_accumulation_steps, )) # Reduce LR if no SDR improvements for several epochs scheduler = ReduceLROnPlateau(optimizer, 'max', patience=config.training.patience, factor=config.training.reduce_factor) if args.use_multistft_loss: try: loss_options = dict(config.loss_multistft) except: loss_options = dict() print('Loss options: {}'.format(loss_options)) loss_multistft = auraloss.freq.MultiResolutionSTFTLoss( **loss_options ) scaler = GradScaler() print('Train for: {}'.format(config.training.num_epochs)) best_sdr = -100 for epoch in range(config.training.num_epochs): model.train().to(device) print('Train epoch: {} Learning rate: {}'.format(epoch, optimizer.param_groups[0]['lr'])) loss_val = 0. total = 0 # total_loss = None pbar = tqdm(train_loader) for i, (batch, mixes) in enumerate(pbar): y = batch.to(device) x = mixes.to(device) # mixture with torch.cuda.amp.autocast(enabled=use_amp): if args.model_type in ['mel_band_roformer', 'bs_roformer']: # loss is computed in forward pass loss = model(x, y) if type(device_ids) != int: # If it's multiple GPUs sum partial loss loss = loss.mean() else: y_ = model(x) if args.use_multistft_loss: y1_ = torch.reshape(y_, (y_.shape[0], y_.shape[1] * y_.shape[2], y_.shape[3])) y1 = torch.reshape(y, (y.shape[0], y.shape[1] * y.shape[2], y.shape[3])) loss = loss_multistft(y1_, y1) # We can use many losses at the same time if args.use_mse_loss: loss += 1000 * nn.MSELoss()(y1_, y1) if args.use_l1_loss: loss += 1000 * F.l1_loss(y1_, y1) elif args.use_mse_loss: loss = nn.MSELoss()(y_, y) elif args.use_l1_loss: loss = F.l1_loss(y_, y) else: loss = masked_loss( y_, y, q=config.training.q, coarse=config.training.coarse_loss_clip ) loss /= gradient_accumulation_steps scaler.scale(loss).backward() if config.training.grad_clip: nn.utils.clip_grad_norm_(model.parameters(), config.training.grad_clip) if ((i + 1) % gradient_accumulation_steps == 0) or (i == len(train_loader) - 1): scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) li = loss.item() * gradient_accumulation_steps loss_val += li total += 1 pbar.set_postfix({'loss': 100 * li, 'avg_loss': 100 * loss_val / (i + 1)}) loss.detach() print('Training loss: {:.6f}'.format(loss_val / total)) # Save last store_path = args.results_path + '/last_{}.ckpt'.format(args.model_type) state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict() torch.save( state_dict, store_path ) # if you have problem with multiproc validation change 0 to 1 if 0: sdr_avg = valid(model, args, config, device, verbose=False) else: sdr_avg = valid_multi_gpu(model, args, config, verbose=False) if sdr_avg > best_sdr: store_path = args.results_path + '/model_{}_ep_{}_sdr_{:.4f}.ckpt'.format(args.model_type, epoch, sdr_avg) print('Store weights: {}'.format(store_path)) state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict() torch.save( state_dict, store_path ) best_sdr = sdr_avg scheduler.step(sdr_avg) if __name__ == "__main__": train_model(None)