### Batch sizes for BSRoformer You can use table below to choose BS Roformer `batch_size` parameter for training based on your GPUs. Batch size values provided for single GPU. If you have several GPUs you need to multiply value on number of GPUs. | chunk_size | dim | depth | batch_size (A6000 48GB) | batch_size (3090/4090 24GB) | batch_size (16GB) | |:----------:|:---:|:-----:|:-----------------------:|:---------------------------:|:-----------------:| | 131584 | 128 | 6 | 10 | 5 | 3 | | 131584 | 256 | 6 | 8 | 4 | 2 | | 131584 | 384 | 6 | 7 | 3 | 2 | | 131584 | 512 | 6 | 6 | 3 | 2 | | 131584 | 256 | 8 | 6 | 3 | 2 | | 131584 | 256 | 12 | 4 | 2 | 1 | | 263168 | 128 | 6 | 4 | 2 | 1 | | 263168 | 256 | 6 | 3 | 1 | 1 | | 352800 | 128 | 6 | 2 | 1 | - | | 352800 | 256 | 6 | 2 | 1 | - | | 352800 | 384 | 12 | 1 | - | - | | 352800 | 512 | 12 | - | - | - | Parameters obtained with initial config: ``` audio: chunk_size: 131584 dim_f: 1024 dim_t: 515 hop_length: 512 n_fft: 2048 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.000 model: dim: 384 depth: 12 stereo: true num_stems: 1 time_transformer_depth: 1 freq_transformer_depth: 1 linear_transformer_depth: 0 freqs_per_bands: !!python/tuple - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 48 - 48 - 48 - 48 - 48 - 48 - 48 - 48 - 128 - 129 dim_head: 64 heads: 8 attn_dropout: 0.1 ff_dropout: 0.1 flash_attn: false dim_freqs_in: 1025 stft_n_fft: 2048 stft_hop_length: 512 stft_win_length: 2048 stft_normalized: false mask_estimator_depth: 2 multi_stft_resolution_loss_weight: 1.0 multi_stft_resolutions_window_sizes: !!python/tuple - 4096 - 2048 - 1024 - 512 - 256 multi_stft_hop_size: 147 multi_stft_normalized: False training: batch_size: 1 gradient_accumulation_steps: 1 grad_clip: 0 instruments: - vocals - other lr: 3.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: vocals num_epochs: 1000 num_steps: 1000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adam other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true ```