# coding: utf-8 __author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' import os import random import numpy as np import torch import soundfile as sf import pickle import time from tqdm import tqdm from glob import glob import audiomentations as AU import pedalboard as PB import warnings warnings.filterwarnings("ignore") def load_chunk(path, length, chunk_size, offset=None): if chunk_size <= length: if offset is None: offset = np.random.randint(length - chunk_size + 1) x = sf.read(path, dtype='float32', start=offset, frames=chunk_size)[0] else: x = sf.read(path, dtype='float32')[0] pad = np.zeros([chunk_size - length, 2]) x = np.concatenate([x, pad]) return x.T class MSSDataset(torch.utils.data.Dataset): def __init__(self, config, data_path, metadata_path="metadata.pkl", dataset_type=1, batch_size=None): self.config = config self.dataset_type = dataset_type # 1, 2, 3 or 4 self.instruments = instruments = config.training.instruments if batch_size is None: batch_size = config.training.batch_size self.batch_size = batch_size self.file_types = ['wav', 'flac'] # Augmentation block self.aug = False if 'augmentations' in config: if config['augmentations'].enable is True: print('Use augmentation for training') self.aug = True else: print('There is no augmentations block in config. Augmentations disabled for training...') # metadata_path = data_path + '/metadata' try: metadata = pickle.load(open(metadata_path, 'rb')) print('Loading songs data from cache: {}. If you updated dataset remove {} before training!'.format(metadata_path, os.path.basename(metadata_path))) except Exception: print('Collecting metadata for', str(data_path), 'Dataset type:', self.dataset_type) if self.dataset_type in [1, 4]: metadata = [] track_paths = [] if type(data_path) == list: for tp in data_path: track_paths += sorted(glob(tp + '/*')) else: track_paths += sorted(glob(data_path + '/*')) track_paths = [path for path in track_paths if os.path.basename(path)[0] != '.' and os.path.isdir(path)] for path in tqdm(track_paths): # Check lengths of all instruments (it can be different in some cases) lengths_arr = [] for instr in instruments: length = -1 for extension in self.file_types: path_to_audio_file = path + '/{}.{}'.format(instr, extension) if os.path.isfile(path_to_audio_file): length = len(sf.read(path_to_audio_file)[0]) break if length == -1: print('Cant find file "{}" in folder {}'.format(instr, path)) continue lengths_arr.append(length) lengths_arr = np.array(lengths_arr) if lengths_arr.min() != lengths_arr.max(): print('Warning: lengths of stems are different for path: {}. ({} != {})'.format( path, lengths_arr.min(), lengths_arr.max()) ) # We use minimum to allow overflow for soundfile read in non-equal length cases metadata.append((path, lengths_arr.min())) elif self.dataset_type == 2: metadata = dict() for instr in self.instruments: metadata[instr] = [] track_paths = [] if type(data_path) == list: for tp in data_path: track_paths += sorted(glob(tp + '/{}/*.wav'.format(instr))) track_paths += sorted(glob(tp + '/{}/*.flac'.format(instr))) else: track_paths += sorted(glob(data_path + '/{}/*.wav'.format(instr))) track_paths += sorted(glob(data_path + '/{}/*.flac'.format(instr))) for path in tqdm(track_paths): length = len(sf.read(path)[0]) metadata[instr].append((path, length)) elif self.dataset_type == 3: import pandas as pd if type(data_path) != list: data_path = [data_path] metadata = dict() for i in range(len(data_path)): print('Reading tracks from: {}'.format(data_path[i])) df = pd.read_csv(data_path[i]) skipped = 0 for instr in self.instruments: part = df[df['instrum'] == instr].copy() print('Tracks found for {}: {}'.format(instr, len(part))) for instr in self.instruments: part = df[df['instrum'] == instr].copy() metadata[instr] = [] track_paths = list(part['path'].values) for path in tqdm(track_paths): if not os.path.isfile(path): print('Cant find track: {}'.format(path)) skipped += 1 continue # print(path) try: length = len(sf.read(path)[0]) except: print('Problem with path: {}'.format(path)) skipped += 1 continue metadata[instr].append((path, length)) if skipped > 0: print('Missing tracks: {} from {}'.format(skipped, len(df))) else: print('Unknown dataset type: {}. Must be 1, 2 or 3'.format(self.dataset_type)) exit() pickle.dump(metadata, open(metadata_path, 'wb')) if self.dataset_type in [1, 4]: if len(metadata) > 0: print('Found tracks in dataset: {}'.format(len(metadata))) else: print('No tracks found for training. Check paths you provided!') exit() else: for instr in self.instruments: print('Found tracks for {} in dataset: {}'.format(instr, len(metadata[instr]))) self.metadata = metadata self.chunk_size = config.audio.chunk_size self.min_mean_abs = config.audio.min_mean_abs def __len__(self): return self.config.training.num_steps * self.batch_size def load_source(self, metadata, instr): while True: if self.dataset_type in [1, 4]: track_path, track_length = random.choice(metadata) for extension in self.file_types: path_to_audio_file = track_path + '/{}.{}'.format(instr, extension) if os.path.isfile(path_to_audio_file): try: source = load_chunk(path_to_audio_file, track_length, self.chunk_size) except Exception as e: # Sometimes error during FLAC reading, catch it and use zero stem print('Error: {} Path: {}'.format(e, path_to_audio_file)) source = np.zeros((2, self.chunk_size), dtype=np.float32) break else: track_path, track_length = random.choice(metadata[instr]) try: source = load_chunk(track_path, track_length, self.chunk_size) except Exception as e: # Sometimes error during FLAC reading, catch it and use zero stem print('Error: {} Path: {}'.format(e, track_path)) source = np.zeros((2, self.chunk_size), dtype=np.float32) if np.abs(source).mean() >= self.min_mean_abs: # remove quiet chunks break if self.aug: source = self.augm_data(source, instr) return torch.tensor(source, dtype=torch.float32) def load_random_mix(self): res = [] for instr in self.instruments: s1 = self.load_source(self.metadata, instr) # Mixup augmentation. Multiple mix of same type of stems if self.aug: if 'mixup' in self.config['augmentations']: if self.config['augmentations'].mixup: mixup = [s1] for prob in self.config.augmentations.mixup_probs: if random.uniform(0, 1) < prob: s2 = self.load_source(self.metadata, instr) mixup.append(s2) mixup = torch.stack(mixup, dim=0) loud_values = np.random.uniform( low=self.config.augmentations.loudness_min, high=self.config.augmentations.loudness_max, size=(len(mixup),) ) loud_values = torch.tensor(loud_values, dtype=torch.float32) mixup *= loud_values[:, None, None] s1 = mixup.mean(dim=0, dtype=torch.float32) res.append(s1) res = torch.stack(res) return res def load_aligned_data(self): track_path, track_length = random.choice(self.metadata) res = [] for i in self.instruments: attempts = 10 while attempts: for extension in self.file_types: path_to_audio_file = track_path + '/{}.{}'.format(i, extension) if os.path.isfile(path_to_audio_file): try: source = load_chunk(path_to_audio_file, track_length, self.chunk_size) except Exception as e: # Sometimes error during FLAC reading, catch it and use zero stem print('Error: {} Path: {}'.format(e, path_to_audio_file)) source = np.zeros((2, self.chunk_size), dtype=np.float32) break if np.abs(source).mean() >= self.min_mean_abs: # remove quiet chunks break attempts -= 1 if attempts <= 0: print('Attempts max!', track_path) res.append(source) res = np.stack(res, axis=0) if self.aug: for i, instr in enumerate(self.instruments): res[i] = self.augm_data(res[i], instr) return torch.tensor(res, dtype=torch.float32) def augm_data(self, source, instr): # source.shape = (2, 261120) - first channels, second length source_shape = source.shape applied_augs = [] if 'all' in self.config['augmentations']: augs = self.config['augmentations']['all'] else: augs = dict() # We need to add to all augmentations specific augs for stem. And rewrite values if needed if instr in self.config['augmentations']: for el in self.config['augmentations'][instr]: augs[el] = self.config['augmentations'][instr][el] # Channel shuffle if 'channel_shuffle' in augs: if augs['channel_shuffle'] > 0: if random.uniform(0, 1) < augs['channel_shuffle']: source = source[::-1].copy() applied_augs.append('channel_shuffle') # Random inverse if 'random_inverse' in augs: if augs['random_inverse'] > 0: if random.uniform(0, 1) < augs['random_inverse']: source = source[:, ::-1].copy() applied_augs.append('random_inverse') # Random polarity (multiply -1) if 'random_polarity' in augs: if augs['random_polarity'] > 0: if random.uniform(0, 1) < augs['random_polarity']: source = -source.copy() applied_augs.append('random_polarity') # Random pitch shift if 'pitch_shift' in augs: if augs['pitch_shift'] > 0: if random.uniform(0, 1) < augs['pitch_shift']: apply_aug = AU.PitchShift( min_semitones=augs['pitch_shift_min_semitones'], max_semitones=augs['pitch_shift_max_semitones'], p=1.0 ) source = apply_aug(samples=source, sample_rate=44100) applied_augs.append('pitch_shift') # Random seven band parametric eq if 'seven_band_parametric_eq' in augs: if augs['seven_band_parametric_eq'] > 0: if random.uniform(0, 1) < augs['seven_band_parametric_eq']: apply_aug = AU.SevenBandParametricEQ( min_gain_db=augs['seven_band_parametric_eq_min_gain_db'], max_gain_db=augs['seven_band_parametric_eq_max_gain_db'], p=1.0 ) source = apply_aug(samples=source, sample_rate=44100) applied_augs.append('seven_band_parametric_eq') # Random tanh distortion if 'tanh_distortion' in augs: if augs['tanh_distortion'] > 0: if random.uniform(0, 1) < augs['tanh_distortion']: apply_aug = AU.TanhDistortion( min_distortion=augs['tanh_distortion_min'], max_distortion=augs['tanh_distortion_max'], p=1.0 ) source = apply_aug(samples=source, sample_rate=44100) applied_augs.append('tanh_distortion') # Random MP3 Compression if 'mp3_compression' in augs: if augs['mp3_compression'] > 0: if random.uniform(0, 1) < augs['mp3_compression']: apply_aug = AU.Mp3Compression( min_bitrate=augs['mp3_compression_min_bitrate'], max_bitrate=augs['mp3_compression_max_bitrate'], backend=augs['mp3_compression_backend'], p=1.0 ) source = apply_aug(samples=source, sample_rate=44100) applied_augs.append('mp3_compression') # Random AddGaussianNoise if 'gaussian_noise' in augs: if augs['gaussian_noise'] > 0: if random.uniform(0, 1) < augs['gaussian_noise']: apply_aug = AU.AddGaussianNoise( min_amplitude=augs['gaussian_noise_min_amplitude'], max_amplitude=augs['gaussian_noise_max_amplitude'], p=1.0 ) source = apply_aug(samples=source, sample_rate=44100) applied_augs.append('gaussian_noise') # Random TimeStretch if 'time_stretch' in augs: if augs['time_stretch'] > 0: if random.uniform(0, 1) < augs['time_stretch']: apply_aug = AU.TimeStretch( min_rate=augs['time_stretch_min_rate'], max_rate=augs['time_stretch_max_rate'], leave_length_unchanged=True, p=1.0 ) source = apply_aug(samples=source, sample_rate=44100) applied_augs.append('time_stretch') # Possible fix of shape if source_shape != source.shape: source = source[..., :source_shape[-1]] # Random Reverb if 'pedalboard_reverb' in augs: if augs['pedalboard_reverb'] > 0: if random.uniform(0, 1) < augs['pedalboard_reverb']: room_size = random.uniform( augs['pedalboard_reverb_room_size_min'], augs['pedalboard_reverb_room_size_max'], ) damping = random.uniform( augs['pedalboard_reverb_damping_min'], augs['pedalboard_reverb_damping_max'], ) wet_level = random.uniform( augs['pedalboard_reverb_wet_level_min'], augs['pedalboard_reverb_wet_level_max'], ) dry_level = random.uniform( augs['pedalboard_reverb_dry_level_min'], augs['pedalboard_reverb_dry_level_max'], ) width = random.uniform( augs['pedalboard_reverb_width_min'], augs['pedalboard_reverb_width_max'], ) board = PB.Pedalboard([PB.Reverb( room_size=room_size, # 0.1 - 0.9 damping=damping, # 0.1 - 0.9 wet_level=wet_level, # 0.1 - 0.9 dry_level=dry_level, # 0.1 - 0.9 width=width, # 0.9 - 1.0 freeze_mode=0.0, )]) source = board(source, 44100) applied_augs.append('pedalboard_reverb') # Random Chorus if 'pedalboard_chorus' in augs: if augs['pedalboard_chorus'] > 0: if random.uniform(0, 1) < augs['pedalboard_chorus']: rate_hz = random.uniform( augs['pedalboard_chorus_rate_hz_min'], augs['pedalboard_chorus_rate_hz_max'], ) depth = random.uniform( augs['pedalboard_chorus_depth_min'], augs['pedalboard_chorus_depth_max'], ) centre_delay_ms = random.uniform( augs['pedalboard_chorus_centre_delay_ms_min'], augs['pedalboard_chorus_centre_delay_ms_max'], ) feedback = random.uniform( augs['pedalboard_chorus_feedback_min'], augs['pedalboard_chorus_feedback_max'], ) mix = random.uniform( augs['pedalboard_chorus_mix_min'], augs['pedalboard_chorus_mix_max'], ) board = PB.Pedalboard([PB.Chorus( rate_hz=rate_hz, depth=depth, centre_delay_ms=centre_delay_ms, feedback=feedback, mix=mix, )]) source = board(source, 44100) applied_augs.append('pedalboard_chorus') # Random Phazer if 'pedalboard_phazer' in augs: if augs['pedalboard_phazer'] > 0: if random.uniform(0, 1) < augs['pedalboard_phazer']: rate_hz = random.uniform( augs['pedalboard_phazer_rate_hz_min'], augs['pedalboard_phazer_rate_hz_max'], ) depth = random.uniform( augs['pedalboard_phazer_depth_min'], augs['pedalboard_phazer_depth_max'], ) centre_frequency_hz = random.uniform( augs['pedalboard_phazer_centre_frequency_hz_min'], augs['pedalboard_phazer_centre_frequency_hz_max'], ) feedback = random.uniform( augs['pedalboard_phazer_feedback_min'], augs['pedalboard_phazer_feedback_max'], ) mix = random.uniform( augs['pedalboard_phazer_mix_min'], augs['pedalboard_phazer_mix_max'], ) board = PB.Pedalboard([PB.Phaser( rate_hz=rate_hz, depth=depth, centre_frequency_hz=centre_frequency_hz, feedback=feedback, mix=mix, )]) source = board(source, 44100) applied_augs.append('pedalboard_phazer') # Random Distortion if 'pedalboard_distortion' in augs: if augs['pedalboard_distortion'] > 0: if random.uniform(0, 1) < augs['pedalboard_distortion']: drive_db = random.uniform( augs['pedalboard_distortion_drive_db_min'], augs['pedalboard_distortion_drive_db_max'], ) board = PB.Pedalboard([PB.Distortion( drive_db=drive_db, )]) source = board(source, 44100) applied_augs.append('pedalboard_distortion') # Random PitchShift if 'pedalboard_pitch_shift' in augs: if augs['pedalboard_pitch_shift'] > 0: if random.uniform(0, 1) < augs['pedalboard_pitch_shift']: semitones = random.uniform( augs['pedalboard_pitch_shift_semitones_min'], augs['pedalboard_pitch_shift_semitones_max'], ) board = PB.Pedalboard([PB.PitchShift( semitones=semitones )]) source = board(source, 44100) applied_augs.append('pedalboard_pitch_shift') # Random Resample if 'pedalboard_resample' in augs: if augs['pedalboard_resample'] > 0: if random.uniform(0, 1) < augs['pedalboard_resample']: target_sample_rate = random.uniform( augs['pedalboard_resample_target_sample_rate_min'], augs['pedalboard_resample_target_sample_rate_max'], ) board = PB.Pedalboard([PB.Resample( target_sample_rate=target_sample_rate )]) source = board(source, 44100) applied_augs.append('pedalboard_resample') # Random Bitcrash if 'pedalboard_bitcrash' in augs: if augs['pedalboard_bitcrash'] > 0: if random.uniform(0, 1) < augs['pedalboard_bitcrash']: bit_depth = random.uniform( augs['pedalboard_bitcrash_bit_depth_min'], augs['pedalboard_bitcrash_bit_depth_max'], ) board = PB.Pedalboard([PB.Bitcrush( bit_depth=bit_depth )]) source = board(source, 44100) applied_augs.append('pedalboard_bitcrash') # Random MP3Compressor if 'pedalboard_mp3_compressor' in augs: if augs['pedalboard_mp3_compressor'] > 0: if random.uniform(0, 1) < augs['pedalboard_mp3_compressor']: vbr_quality = random.uniform( augs['pedalboard_mp3_compressor_pedalboard_mp3_compressor_min'], augs['pedalboard_mp3_compressor_pedalboard_mp3_compressor_max'], ) board = PB.Pedalboard([PB.MP3Compressor( vbr_quality=vbr_quality )]) source = board(source, 44100) applied_augs.append('pedalboard_mp3_compressor') # print(applied_augs) return source def __getitem__(self, index): if self.dataset_type in [1, 2, 3]: res = self.load_random_mix() else: res = self.load_aligned_data() # Randomly change loudness of each stem if self.aug: if 'loudness' in self.config['augmentations']: if self.config['augmentations']['loudness']: loud_values = np.random.uniform( low=self.config['augmentations']['loudness_min'], high=self.config['augmentations']['loudness_max'], size=(len(res),) ) loud_values = torch.tensor(loud_values, dtype=torch.float32) res *= loud_values[:, None, None] mix = res.sum(0) if self.aug: if 'mp3_compression_on_mixture' in self.config['augmentations']: apply_aug = AU.Mp3Compression( min_bitrate=self.config['augmentations']['mp3_compression_on_mixture_bitrate_min'], max_bitrate=self.config['augmentations']['mp3_compression_on_mixture_bitrate_max'], backend=self.config['augmentations']['mp3_compression_on_mixture_backend'], p=self.config['augmentations']['mp3_compression_on_mixture'] ) mix_conv = mix.cpu().numpy().astype(np.float32) required_shape = mix_conv.shape mix = apply_aug(samples=mix_conv, sample_rate=44100) # Sometimes it gives longer audio (so we cut) if mix.shape != required_shape: mix = mix[..., :required_shape[-1]] mix = torch.tensor(mix, dtype=torch.float32) # If we need only given stem (for roformers) if self.config.training.target_instrument is not None: index = self.config.training.instruments.index(self.config.training.target_instrument) return res[index], mix return res, mix