audio: chunk_size: 261632 dim_f: 4096 dim_t: 512 hop_length: 512 n_fft: 8192 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.001 model: encoder_name: tu-maxvit_large_tf_512 # look here for possibilities: https://github.com/qubvel/segmentation_models.pytorch#encoders- decoder_type: unet # unet, fpn act: gelu num_channels: 128 num_subbands: 8 training: batch_size: 7 gradient_accumulation_steps: 1 grad_clip: 0 instruments: - vocals - bass - drums - other lr: 5.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: null num_epochs: 1000 num_steps: 2000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adamw other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true augmentations: enable: true # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3) mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02) - 0.2 - 0.02 mixup_loudness_min: 0.5 mixup_loudness_max: 1.5 # apply mp3 compression to mixture only (emulate downloading mp3 from internet) mp3_compression_on_mixture: 0.01 mp3_compression_on_mixture_bitrate_min: 32 mp3_compression_on_mixture_bitrate_max: 320 mp3_compression_on_mixture_backend: "lameenc" all: channel_shuffle: 0.5 # Set 0 or lower to disable random_inverse: 0.1 # inverse track (better lower probability) random_polarity: 0.5 # polarity change (multiply waveform to -1) mp3_compression: 0.01 mp3_compression_min_bitrate: 32 mp3_compression_max_bitrate: 320 mp3_compression_backend: "lameenc" vocals: pitch_shift: 0.1 pitch_shift_min_semitones: -5 pitch_shift_max_semitones: 5 seven_band_parametric_eq: 0.25 seven_band_parametric_eq_min_gain_db: -9 seven_band_parametric_eq_max_gain_db: 9 tanh_distortion: 0.1 tanh_distortion_min: 0.1 tanh_distortion_max: 0.7 other: pitch_shift: 0.1 pitch_shift_min_semitones: -4 pitch_shift_max_semitones: 4 gaussian_noise: 0.1 gaussian_noise_min_amplitude: 0.001 gaussian_noise_max_amplitude: 0.015 time_stretch: 0.01 time_stretch_min_rate: 0.8 time_stretch_max_rate: 1.25 inference: batch_size: 1 dim_t: 512 num_overlap: 4