|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' |
|
|
|
import argparse |
|
import time |
|
import librosa |
|
from tqdm import tqdm |
|
import sys |
|
import os |
|
import glob |
|
import torch |
|
import numpy as np |
|
import soundfile as sf |
|
import torch.nn as nn |
|
from utils import demix_track, demix_track_demucs, get_model_from_config |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
def run_folder(model, args, config, device, verbose=False): |
|
start_time = time.time() |
|
model.eval() |
|
all_mixtures_path = glob.glob(args.input_folder + '/*.*') |
|
print('Total files found: {}'.format(len(all_mixtures_path))) |
|
|
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
if not os.path.isdir(args.store_dir): |
|
os.mkdir(args.store_dir) |
|
|
|
if not verbose: |
|
all_mixtures_path = tqdm(all_mixtures_path) |
|
|
|
for path in all_mixtures_path: |
|
if not verbose: |
|
all_mixtures_path.set_postfix({'track': os.path.basename(path)}) |
|
try: |
|
|
|
mix, sr = librosa.load(path, sr=44100, mono=False) |
|
mix = mix.T |
|
except Exception as e: |
|
print('Can read track: {}'.format(path)) |
|
print('Error message: {}'.format(str(e))) |
|
continue |
|
|
|
|
|
if len(mix.shape) == 1: |
|
mix = np.stack([mix, mix], axis=-1) |
|
|
|
mixture = torch.tensor(mix.T, dtype=torch.float32) |
|
if args.model_type == 'htdemucs': |
|
res = demix_track_demucs(config, model, mixture, device) |
|
else: |
|
res = demix_track(config, model, mixture, device) |
|
for instr in instruments: |
|
sf.write("{}/{}_{}.wav".format(args.store_dir, os.path.basename(path)[:-4], instr), res[instr].T, sr, subtype='FLOAT') |
|
|
|
if 'vocals' in instruments and args.extract_instrumental: |
|
instrum_file_name = "{}/{}_{}.wav".format(args.store_dir, os.path.basename(path)[:-4], 'instrumental') |
|
sf.write(instrum_file_name, mix - res['vocals'].T, sr, subtype='FLOAT') |
|
|
|
time.sleep(1) |
|
print("Elapsed time: {:.2f} sec".format(time.time() - start_time)) |
|
|
|
|
|
def proc_folder(args): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit") |
|
parser.add_argument("--config_path", type=str, help="path to config file") |
|
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights") |
|
parser.add_argument("--input_folder", type=str, help="folder with mixtures to process") |
|
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file") |
|
parser.add_argument("--model-dir", default="", type=str, help="path to store results as wav file") |
|
parser.add_argument("--log-dir", default="", type=str, help="path to store results as wav file") |
|
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids') |
|
parser.add_argument("--extract_instrumental", action='store_true', help="invert vocals to get instrumental if provided") |
|
print(f"cuda{torch.cuda.is_available()}") |
|
if args is None: |
|
args = parser.parse_args() |
|
else: |
|
args = parser.parse_args(args) |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
model, config = get_model_from_config(args.model_type, args.config_path) |
|
if args.start_check_point != '': |
|
print('Start from checkpoint: {}'.format(args.start_check_point)) |
|
state_dict = torch.load(args.start_check_point, map_location='cpu') |
|
if args.model_type == 'htdemucs': |
|
|
|
if 'state' in state_dict: |
|
state_dict = state_dict['state'] |
|
model.load_state_dict(state_dict) |
|
print("Instruments: {}".format(config.training.instruments)) |
|
|
|
if torch.cuda.is_available(): |
|
device_ids = args.device_ids |
|
if type(device_ids)==int: |
|
device = torch.device(f'cuda:{device_ids}') |
|
model = model.to(device) |
|
else: |
|
device = torch.device(f'cuda:{device_ids[0]}') |
|
model = nn.DataParallel(model, device_ids=device_ids).to(device) |
|
else: |
|
device = 'cpu' |
|
print('CUDA is not avilable. Run inference on CPU. It will be very slow...') |
|
model = model.to(device) |
|
|
|
run_folder(model, args, config, device, verbose=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
proc_folder(None) |
|
|