import datasets import numpy as np import pandas as pd import hickle as hkl from pathlib import Path _CITATION = """\ @InProceedings{huggingface:dataset, title = {rsna-atd}, author = {Yeow Zi Qin}, year = {2023} } """ _DESCRIPTION = """\ The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection. It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney, left_kidney, bowel). """ _NAME = "rsna-atd" _HOMEPAGE = f"https://huggingface.co./datasets/ziq/{_NAME}" _LICENSE = "MIT" _DATA = f"https://huggingface.co./datasets/ziq/{_NAME}/resolve/main/data/" class RSNAATD(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { # "test": datasets.Value("string"), "patient_id": datasets.Value("int64"), "series_id": datasets.Value("int64"), "image_path": datasets.Value("string"), "mask_path": datasets.Value("string"), # "image": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"), # "mask": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"), "aortic_hu": datasets.Value("float64"), "incomplete_organ": datasets.Value("int64"), "bowel_healthy": datasets.Value("int64"), "bowel_injury": datasets.Value("int64"), "extravasation_healthy": datasets.Value("int64"), "extravasation_injury": datasets.Value("int64"), "kidney_healthy": datasets.Value("int64"), "kidney_low": datasets.Value("int64"), "kidney_high": datasets.Value("int64"), "liver_healthy": datasets.Value("int64"), "liver_low": datasets.Value("int64"), "liver_high": datasets.Value("int64"), "spleen_healthy": datasets.Value("int64"), "spleen_low": datasets.Value("int64"), "spleen_high": datasets.Value("int64"), "any_injury": datasets.Value("int64"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): train_images = dl_manager.download_and_extract(f"{_DATA}images.zip") train_masks = dl_manager.download_and_extract(f"{_DATA}masks.zip") metadata = dl_manager.download(f"{_DATA}metadata.csv") train_images = dl_manager.iter_files(train_images) train_masks = dl_manager.iter_files(train_masks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": train_images, "masks": train_masks, "metadata": metadata, }, ), ] def _generate_examples(self, images, masks, metadata): df = pd.read_csv(metadata) # yield 0, { # "test": images # } # return # for i, image in enumerate(images): # # image_path = Path(image).name # # test = hkl.load(image_path) # yield i, { # "test": image # } # return for idx, (image_path, mask_path) in enumerate(zip(sorted(images), sorted(masks))): data = df.loc[df["path"] == Path(image_path).name].to_numpy()[0] # image, mask = [hkl.load(image_path)], [hkl.load(mask_path)] ( patient_id, series_id, aortic_hu, incomplete_organ, bowel_healthy, bowel_injury, extravasation_healthy, extravasation_injury, kidney_healthy, kidney_low, kidney_high, liver_healthy, liver_low, liver_high, spleen_healthy, spleen_low, spleen_high, any_injury, ) = data[1:] yield idx, { "patient_id": patient_id, "series_id": series_id, "image_path": image_path, "mask_path": mask_path, "aortic_hu": aortic_hu, "incomplete_organ": incomplete_organ, "bowel_healthy": bowel_healthy, "bowel_injury": bowel_injury, "extravasation_healthy": extravasation_healthy, "extravasation_injury": extravasation_injury, "kidney_healthy": kidney_healthy, "kidney_low": kidney_low, "kidney_high": kidney_high, "liver_healthy": liver_healthy, "liver_low": liver_low, "liver_high": liver_high, "spleen_healthy": spleen_healthy, "spleen_low": spleen_low, "spleen_high": spleen_high, "any_injury": any_injury, }