Commit
·
e44992c
1
Parent(s):
1d3831b
Upload Carla-COCO-Object-Detection-Dataset.py
Browse files
Carla-COCO-Object-Detection-Dataset.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Permission is hereby granted, free of charge, to any person obtaining
|
3 |
+
# a copy of this software and associated documentation files (the
|
4 |
+
# "Software"), to deal in the Software without restriction, including
|
5 |
+
# without limitation the rights to use, copy, modify, merge, publish,
|
6 |
+
# distribute, sublicense, and/or sell copies of the Software, and to
|
7 |
+
# permit persons to whom the Software is furnished to do so, subject to
|
8 |
+
# the following conditions:
|
9 |
+
|
10 |
+
# The above copyright notice and this permission notice shall be
|
11 |
+
# included in all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
14 |
+
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
15 |
+
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
16 |
+
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
17 |
+
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
18 |
+
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
19 |
+
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
20 |
+
"""Carla-COCO-Object-Detection-Dataset"""
|
21 |
+
|
22 |
+
import collections
|
23 |
+
import json
|
24 |
+
import os
|
25 |
+
|
26 |
+
import datasets
|
27 |
+
|
28 |
+
|
29 |
+
logger = datasets.logging.get_logger(__name__)
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
This dataset contains 1028 images each 640x380 pixels.
|
33 |
+
The dataset is split into 249 test and 779 training examples.
|
34 |
+
Every image comes with MS COCO format annotations.
|
35 |
+
The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments
|
36 |
+
(Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
|
37 |
+
The labels where then automatically generated using the semantic segmentation information.
|
38 |
+
"""
|
39 |
+
|
40 |
+
_HOMEPAGE = "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset"
|
41 |
+
|
42 |
+
_LICENSE = "MIT"
|
43 |
+
|
44 |
+
_URL = "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/raw/master/"
|
45 |
+
_URLS = {
|
46 |
+
"train": _URL + "train.tar.gz",
|
47 |
+
"test": _URL + "test.tar.gz",
|
48 |
+
}
|
49 |
+
|
50 |
+
_CATEGORIES = ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"]
|
51 |
+
|
52 |
+
class CARLA_COCO(datasets.GeneratorBasedBuilder):
|
53 |
+
"""Carla-COCO-Object-Detection-Dataset"""
|
54 |
+
|
55 |
+
VERSION = datasets.Version("1.1.0")
|
56 |
+
|
57 |
+
def _info(self):
|
58 |
+
features = datasets.Features(
|
59 |
+
{
|
60 |
+
"image_id": datasets.Value("int64"),
|
61 |
+
"image": datasets.Image(),
|
62 |
+
"width": datasets.Value("int32"),
|
63 |
+
"height": datasets.Value("int32"),
|
64 |
+
"file_name": datasets.Value("string"),
|
65 |
+
"url": datasets.Value("string"),
|
66 |
+
"objects": datasets.Sequence(
|
67 |
+
{
|
68 |
+
"id": datasets.Value("int64"),
|
69 |
+
"area": datasets.Value("int64"),
|
70 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
71 |
+
"category": datasets.ClassLabel(names=_CATEGORIES),
|
72 |
+
}
|
73 |
+
),
|
74 |
+
}
|
75 |
+
)
|
76 |
+
return datasets.DatasetInfo(
|
77 |
+
description=_DESCRIPTION,
|
78 |
+
features=features,
|
79 |
+
homepage=_HOMEPAGE,
|
80 |
+
license=_LICENSE,
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager):
|
84 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
85 |
+
|
86 |
+
return [
|
87 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
88 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
89 |
+
]
|
90 |
+
|
91 |
+
def _generate_examples(self, filepath):
|
92 |
+
logger.info("generating examples from = %s", filepath)
|
93 |
+
|
94 |
+
with open(filepath, encoding="utf-8") as f:
|
95 |
+
for idx, line in enumerate(f):
|
96 |
+
yield idx, json.loads(line)
|