|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Carla-COCO-Object-Detection-Dataset""" |
|
|
|
import collections |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains 1028 images each 640x380 pixels. |
|
The dataset is split into 249 test and 779 training examples. |
|
Every image comes with MS COCO format annotations. |
|
The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments |
|
(Town01, Town02, Town03, Town04, Town05) and saving every i-th frame. |
|
The labels where then automatically generated using the semantic segmentation information. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_URL = "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/raw/master/" |
|
_URLS = { |
|
"train": _URL + "train.tar.gz", |
|
"test": _URL + "test.tar.gz", |
|
} |
|
|
|
_CATEGORIES = ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"] |
|
|
|
class CARLA_COCO(datasets.GeneratorBasedBuilder): |
|
"""Carla-COCO-Object-Detection-Dataset""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
"""This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset""" |
|
|
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
|
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"file_name": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"id": datasets.Sequence(datasets.Value("int64")), |
|
"area": datasets.Sequence(datasets.Value("int64")), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"category": datasets.Sequence(datasets.ClassLabel(names=_CATEGORIES)), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""This method is tasked with downloading/extracting the data and defining the splits depending on the configuration""" |
|
|
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_files["train"], "train.jsonl"), |
|
"split": "train" |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_files["test"], "test.jsonl"), |
|
"split": "test" |
|
} |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
""" |
|
This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. |
|
The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. |
|
""" |
|
|
|
logger.info("generating examples from = %s", filepath) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
yield key, { |
|
"image_id": data["image_id"], |
|
|
|
"width": data["width"], |
|
"height": data["height"], |
|
"file_name": data["file_name"], |
|
"url": data["url"], |
|
"objects": { |
|
"id": data["objects"]["id"], |
|
"area": data["objects"]["area"], |
|
"bbox": data["objects"]["bbox"], |
|
"category": [c-1 for c in data["objects"]["category"]] |
|
}, |
|
} |