Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,833 Bytes
99a88c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73a751a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: other
license_name: apple
license_link: LICENSE
dataset_info:
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: original_context
    dtype: string
  - name: original_answers
    sequence: string
  - name: substituted_context
    dtype: string
  - name: substituted_answers
    sequence: string
  - name: substitution_type
    dtype: string
  splits:
  - name: dev
    num_bytes: 8106521
    num_examples: 5510
  download_size: 3718124
  dataset_size: 16213042
configs:
- config_name: default
  data_files:
  - split: dev
    path: data/dev-*
---
# Reference
This dataset is the reproduced version of ["Entity-Based Knowledge Conflicts in Question Answering"](https://arxiv.org/abs/2109.05052) dataset.
```bib
@inproceedings{longpre-etal-2021-entity,
    title = "Entity-Based Knowledge Conflicts in Question Answering",
    author = "Longpre, Shayne  and
      Perisetla, Kartik  and
      Chen, Anthony  and
      Ramesh, Nikhil  and
      DuBois, Chris  and
      Singh, Sameer",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.565",
    pages = "7052--7063",
}
```

### Dataset that was used
Among the datasets provided by [MRQA Shared Task 2019](https://github.com/mrqa/MRQA-Shared-Task-2019), we employ the `dev` split from [Natural Questions](https://research.google/pubs/natural-questions-a-benchmark-for-question-answering-research/).
```python
wget.download("https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/NaturalQuestionsShort.jsonl.gz", "destination_dir/NaturalQuestionsShort.jsonl.gz")
```
For the convenience of our analysis, we have filtered out
- duplicate QA examples which have identical (question, context) pairs
- QA examples whose context exceeds 400 words

# Downloading our Dataset
```python
# loading dataset
from datasets import load_dataset
dataset = load_dataset("younanna/NQ-Swap")
```

# Data Fields
- "id": The identifier (string) of each QA example
- "question": The question in natural language
- "original_context": The context from the original "Natural Questions" dataset
- "original_answers": The gold answers based on the information in "original_context"
- "substituted_context": The context obtained by replacing all occurrences of "original_answer" in "original_context", to "substituted_answer"
- "substituted_answers": The result of substitution performed on "original_answers". The types of substitutions are explained in [Section 2.2 of the paper](https://arxiv.org/pdf/2109.05052#page=2.45).
- "substitution_type": The type of substitution that has been applied