File size: 4,622 Bytes
48973a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cleaned Dutch split of the mC4 corpus."""


import json
import datasets

logger = datasets.logging.get_logger(__name__)

_HOMEPAGE = "https://github.com/abisee/cnn-dailymail"

_DESCRIPTION = """\
CNN/DailyMail non-anonymized summarization dataset, translated to Dutch with ccmatrix.
There are two features:
  - article: text of news article, used as the document to be summarized
  - highlights: joined text of highlights with <s> and </s> around each
    highlight, which is the target summary
"""

_LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0"

_DATA_URL_NL = "https://huggingface.co./datasets/yhavinga/cnn_dailymail_dutch/resolve/main/{config}/{split}.json.gz"

# The second citation introduces the source data, while the first
# introduces the specific form (non-anonymized) we use here.
_CITATION = """\
@article{DBLP:journals/corr/SeeLM17,
  author    = {Abigail See and
               Peter J. Liu and
               Christopher D. Manning},
  title     = {Get To The Point: Summarization with Pointer-Generator Networks},
  journal   = {CoRR},
  volume    = {abs/1704.04368},
  year      = {2017},
  url       = {http://arxiv.org/abs/1704.04368},
  archivePrefix = {arXiv},
  eprint    = {1704.04368},
  timestamp = {Mon, 13 Aug 2018 16:46:08 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/SeeLM17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{hermann2015teaching,
  title={Teaching machines to read and comprehend},
  author={Hermann, Karl Moritz and Kocisky, Tomas and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil},
  booktitle={Advances in neural information processing systems},
  pages={1693--1701},
  year={2015}
}
"""

_HIGHLIGHTS = "highlights"
_ARTICLE = "article"

_SUPPORTED_VERSIONS = [
    # Using cased version.
    datasets.Version("3.0.0", "Using cased version."),
]


class CnnDailymailDutchConfig(datasets.BuilderConfig):
    """BuilderConfig for CnnDailymail Dutch."""

    def __init__(self, **kwargs):
        """BuilderConfig for CnnDailymail Dutch.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)


class CnnDailymailDutch(datasets.GeneratorBasedBuilder):
    """CNN/DailyMail non-anonymized summarization dataset in Dutch."""

    BUILDER_CONFIGS = [
        CnnDailymailDutchConfig(
            name=str(version), description=version.description
        )
        for version in _SUPPORTED_VERSIONS
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    _ARTICLE: datasets.Value("string"),
                    _HIGHLIGHTS: datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        result = [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "filepath": dl_manager.download_and_extract(
                        _DATA_URL_NL.format(split=str(split), config=str(self.config.name))
                    )
                },
            )
            for split in [
                datasets.Split.TRAIN,
                datasets.Split.VALIDATION,
                datasets.Split.TEST,
            ]
        ]
        return result

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        logger.info(f"Generating examples from {filepath}")

        with open(filepath, "r") as file:
            for _id, line in enumerate(file):
                example = json.loads(line)
                yield _id, example