import datasets from datasets.tasks import TaskTemplate from sklearn.model_selection import train_test_split _ORIGIN = "https://archive-beta.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic" _CITATION = """\ Wolberg,William, Street,W. & Mangasarian,Olvi. (1995). Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B. """ _DESCRIPTION = """\ Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at http://www.cs.wisc.edu/~street/images/ """ class WisconsinBreastCancer(datasets.GeneratorBasedBuilder): def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, homepage=_ORIGIN, license="", ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": "train.csv"}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": "test.csv"}), ] def _generate_examples(self, filepath): with open(filepath, "r") as f: next(f) for key, row in enumerate(f): yield key, {"data": row[:-1], "label": row[-1]}