# coding=utf-8 # Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Artwork Images - a dataset of centuries of Images prompt.""" import os import pandas as pd import datasets from PIL import Image # from .classes import IMAGENET2012_CLASSES _HOMEPAGE = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/tree/main" _CITATION = """\ Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695). } """ _DESCRIPTION = """\ Artwork Images, to generate the similar artwork using stable diffusion model. """ _URL = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/metadata.jsonl" class Artwork(datasets.GeneratorBasedBuilder): """Artwork Images - a dataset of centuries of Images prompt.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "prompt": str, "image_data": Image, } ), supervised_keys=("prompt","image_data"), homepage=_HOMEPAGE, ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URL) df = pd.read_json(data_files, lines=True) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": df, }, ), ] def _generate_examples(self, files): cnt=0 for path in files.itertuples(): print(cnt) cnt+=1 print(path) print(path.prompt) print(type(path.prompt)) print(path.image_data) print(type(path.image_data)) yield { "prompt": path.prompt, "image_data": Image.open(path.image_data), }