artwork_for_sdxl / artwork_for_sdxl.py
wintercoming6's picture
Update artwork_for_sdxl.py
090a68a verified
raw
history blame
2.98 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ImageNet-Sketch data set for evaluating model's ability in learning (out-of-domain) semantics at ImageNet scale"""
import os
import pandas as pd
import datasets
from datasets.tasks import ImageClassification
# from .classes import IMAGENET2012_CLASSES
_HOMEPAGE = "https://huggingface.co./datasets/AIPI540/test2/tree/main"
_CITATION = """\
@inproceedings{wang2019learning,
title={Learning Robust Global Representations by Penalizing Local Predictive Power},
author={Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P},
booktitle={Advances in Neural Information Processing Systems},
pages={10506--10518},
year={2019}
}
"""
_DESCRIPTION = """\
Artwork Images, to predict the year of the artwork created.
"""
_URL = "https://huggingface.co./datasets/AIPI540/Art2/resolve/main/final_art_data.parquet"
class Artwork(datasets.GeneratorBasedBuilder):
"""Artwork Images - a dataset of centuries of Images classes"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"label": datasets.features.ClassLabel(names=classes),
"image_data": datasets.Value("binary"),
}
),
supervised_keys=("label","image_data"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image_data", label_column="label")],
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URL)
df = pd.read_parquet(data_files, engine='pyarrow')
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": df,
},
),
]
def _generate_examples(self, files):
cnt=0
for path in files.itertuples():
print(cnt)
cnt+=1
print(path)
print(path.label)
print(type(path.label))
print(path.image_data)
print(type(path.image_data))
yield {
"label": classes[(path.label)],
"image_data": path.image_data,
}