File size: 3,365 Bytes
090a68a
969a423
090a68a
 
 
 
 
 
 
 
 
 
 
 
969a423
090a68a
 
 
 
 
969a423
c373fe0
adad9f7
d2f28c9
090a68a
 
 
969a423
090a68a
 
969a423
090a68a
 
 
 
969a423
090a68a
 
46f2eeb
f21a7cb
090a68a
 
969a423
090a68a
 
 
 
 
 
9a09fd1
185d6b8
090a68a
 
969a423
090a68a
 
 
 
 
46f2eeb
f21a7cb
090a68a
 
 
 
 
 
 
 
f21a7cb
 
 
 
 
090a68a
 
 
39f8052
090a68a
 
12e2210
a1df5b0
 
 
 
 
cf0e626
 
 
 
 
d3aaa4d
12e2210
89d49c3
d3aaa4d
39f8052
d0a1294
12e2210
60e0af3
7d182f3
f345f96
185d6b8
485ce10
cf0e626
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# coding=utf-8
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Artwork Images - a dataset of centuries of Images prompt."""

import os

import pandas as pd
import datasets
from PIL import Image
import requests
import io
import json



_HOMEPAGE = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/tree/main"

_CITATION = """\
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).  
}
"""

_DESCRIPTION = """\
Artwork Images, to generate the similar artwork using stable diffusion model.
"""

_URL = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/metadata.jsonl"
_image_url = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/"

class Artwork(datasets.GeneratorBasedBuilder):
    """Artwork Images - a dataset of centuries of Images prompt."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "prompt": datasets.Value("string"),
                    "image_data": datasets.Image(),
                }
            ),
            supervised_keys=("prompt","image_data"),
            homepage=_HOMEPAGE,
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URL)
        df = pd.read_json(data_files, lines=True)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": df,
                },
            ),
        ]
    
    def download_image(self, url):
        response = requests.get(url)
        img = Image.open(io.BytesIO(response.content))
        return img

    def _generate_examples(self, files):
        cnt=0
        for _, row in files.iterrows():
            print(cnt)
            cnt+=1
            examples = {}
            # p=row.prompt
            # n=row.file_name
            # examples["image_data"] = p
            # examples["prompt"] = p
            # print(examples)
            # print(row)
            # print(row.prompt)
            # print(type(row.prompt))
            # print(row.file_name)
            # print(type(row.file_name))
            # print current os directory
            

            print(os.getcwd())
            img = self.download_image(_image_url+ row.file_name)
            print(img)

            # examples_json = json.dumps(examples)
            
            yield row.file_name, {
                    "image_data": img,
                    "prompt": row.prompt,
                }