File size: 3,365 Bytes
090a68a 969a423 090a68a 969a423 090a68a 969a423 c373fe0 adad9f7 d2f28c9 090a68a 969a423 090a68a 969a423 090a68a 969a423 090a68a 46f2eeb f21a7cb 090a68a 969a423 090a68a 9a09fd1 185d6b8 090a68a 969a423 090a68a 46f2eeb f21a7cb 090a68a f21a7cb 090a68a 39f8052 090a68a 12e2210 a1df5b0 cf0e626 d3aaa4d 12e2210 89d49c3 d3aaa4d 39f8052 d0a1294 12e2210 60e0af3 7d182f3 f345f96 185d6b8 485ce10 cf0e626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# coding=utf-8
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Artwork Images - a dataset of centuries of Images prompt."""
import os
import pandas as pd
import datasets
from PIL import Image
import requests
import io
import json
_HOMEPAGE = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/tree/main"
_CITATION = """\
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).
}
"""
_DESCRIPTION = """\
Artwork Images, to generate the similar artwork using stable diffusion model.
"""
_URL = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/metadata.jsonl"
_image_url = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/"
class Artwork(datasets.GeneratorBasedBuilder):
"""Artwork Images - a dataset of centuries of Images prompt."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"prompt": datasets.Value("string"),
"image_data": datasets.Image(),
}
),
supervised_keys=("prompt","image_data"),
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URL)
df = pd.read_json(data_files, lines=True)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": df,
},
),
]
def download_image(self, url):
response = requests.get(url)
img = Image.open(io.BytesIO(response.content))
return img
def _generate_examples(self, files):
cnt=0
for _, row in files.iterrows():
print(cnt)
cnt+=1
examples = {}
# p=row.prompt
# n=row.file_name
# examples["image_data"] = p
# examples["prompt"] = p
# print(examples)
# print(row)
# print(row.prompt)
# print(type(row.prompt))
# print(row.file_name)
# print(type(row.file_name))
# print current os directory
print(os.getcwd())
img = self.download_image(_image_url+ row.file_name)
print(img)
# examples_json = json.dumps(examples)
yield row.file_name, {
"image_data": img,
"prompt": row.prompt,
} |