File size: 2,665 Bytes
090a68a
969a423
090a68a
 
 
 
 
 
 
 
 
 
 
 
969a423
090a68a
 
 
 
 
969a423
090a68a
 
 
 
969a423
090a68a
 
969a423
090a68a
 
 
 
969a423
090a68a
 
46f2eeb
090a68a
 
969a423
090a68a
 
 
 
 
 
46f2eeb
 
090a68a
 
969a423
090a68a
 
 
 
 
46f2eeb
 
090a68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46f2eeb
 
090a68a
 
 
46f2eeb
 
090a68a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# coding=utf-8
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Artwork Images - a dataset of centuries of Images prompt."""

import os

import pandas as pd
import datasets
from PIL import Image

# from .classes import IMAGENET2012_CLASSES


_HOMEPAGE = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/tree/main"

_CITATION = """\
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).  
}
"""

_DESCRIPTION = """\
Artwork Images, to generate the similar artwork using stable diffusion model.
"""

_URL = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/metadata.jsonl"

class Artwork(datasets.GeneratorBasedBuilder):
    """Artwork Images - a dataset of centuries of Images prompt."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "prompt": str,
                    "image_data": Image,
                }
            ),
            supervised_keys=("prompt","image_data"),
            homepage=_HOMEPAGE,
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URL)
        df = pd.read_json(data_files, lines=True)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": df,
                },
            ),
        ]

    def _generate_examples(self, files):
        cnt=0
        for path in files.itertuples():
            print(cnt)
            cnt+=1
            print(path)
            print(path.prompt)
            print(type(path.prompt))
            print(path.image_data)
            print(type(path.image_data))
            yield {
              "prompt": path.prompt,
              "image_data": Image.open(path.image_data),
            }