File size: 3,231 Bytes
090a68a
969a423
090a68a
 
 
 
 
 
 
 
 
 
 
 
969a423
090a68a
 
 
 
 
969a423
c373fe0
adad9f7
39f8052
d2f28c9
090a68a
 
 
969a423
090a68a
 
969a423
090a68a
 
 
 
969a423
090a68a
 
46f2eeb
f21a7cb
090a68a
 
969a423
090a68a
 
 
 
 
 
9a09fd1
89d49c3
090a68a
 
969a423
090a68a
 
 
 
 
46f2eeb
f21a7cb
090a68a
 
 
 
 
 
 
 
f21a7cb
 
 
 
 
090a68a
 
 
39f8052
090a68a
 
39f8052
 
 
 
 
d3aaa4d
39f8052
 
89d49c3
d3aaa4d
39f8052
d0a1294
9e68b37
892c9ae
 
60e0af3
 
892c9ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# coding=utf-8
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Artwork Images - a dataset of centuries of Images prompt."""

import os

import pandas as pd
import datasets
from PIL import Image
import requests
import io
import tfds
import json



_HOMEPAGE = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/tree/main"

_CITATION = """\
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).  
}
"""

_DESCRIPTION = """\
Artwork Images, to generate the similar artwork using stable diffusion model.
"""

_URL = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/metadata.jsonl"
_image_url = "https://huggingface.co./datasets/wintercoming6/artwork_for_sdxl/resolve/main/"

class Artwork(datasets.GeneratorBasedBuilder):
    """Artwork Images - a dataset of centuries of Images prompt."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "prompt": datasets.Value("string"),
                    "image_data": datasets.Value("string"),
                }
            ),
            supervised_keys=("prompt","image_data"),
            homepage=_HOMEPAGE,
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URL)
        df = pd.read_json(data_files, lines=True)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": df,
                },
            ),
        ]
    
    def download_image(self, url):
        response = requests.get(url)
        img = Image.open(io.BytesIO(response.content))
        return img

    def _generate_examples(self, files):
        cnt=0
        for _, row in files.iterrows():
            print(cnt)
            cnt+=1
            print(row)
            print(row.prompt)
            print(type(row.prompt))
            print(row.file_name)
            print(type(row.file_name))
            # print current os directory
            p=row.prompt
            n=row.file_name

            print(os.getcwd())
            img = self.download_image(_image_url+ row.file_name)
            print(img)
            examples = {}
            examples["image_data"] = n
            examples["prompt"] = p
            # examples_json = json.dumps(examples)
            print(examples)
            yield examples