victoriadreis's picture
Update tupy.py
c42eaa8
raw
history blame
7.49 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Toxic/Abusive Tweets Multilabel Classification Dataset for Brazilian Portuguese."""
import os
import pandas as pd
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/abs-2010-04543,
author = {Joao Augusto Leite and
Diego F. Silva and
Kalina Bontcheva and
Carolina Scarton},
title = {Toxic Language Detection in Social Media for Brazilian Portuguese:
New Dataset and Multilingual Analysis},
journal = {CoRR},
volume = {abs/2010.04543},
year = {2020},
url = {https://arxiv.org/abs/2010.04543},
eprinttype = {arXiv},
eprint = {2010.04543},
timestamp = {Tue, 15 Dec 2020 16:10:16 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2010-04543.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced
by 42 annotators selected from a pool of 129 volunteers. Annotators were selected aiming
to create a plural group in terms of demographics (ethnicity, sexual orientation, age, gender).
Each tweet was labeled by three annotators in 6 possible categories:
LGBTQ+phobia,Xenophobia, Obscene, Insult, Misogyny and Racism.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/JAugusto97/ToLD-Br"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "https://github.com/JAugusto97/ToLD-Br/blob/main/LICENSE_ToLD-Br.txt "
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"multilabel": "https://raw.githubusercontent.com/JAugusto97/ToLD-Br/main/ToLD-BR.csv",
"binary": "https://github.com/JAugusto97/ToLD-Br/raw/main/experiments/data/1annotator.zip",
}
class ToldBr(datasets.GeneratorBasedBuilder):
"""Toxic/Abusive Tweets Classification Dataset for Brazilian Portuguese."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="multilabel",
version=VERSION,
description="""
Full multilabel dataset with target values ranging
from 0 to 3 representing the votes from each annotator.
""",
),
datasets.BuilderConfig(
name="binary",
version=VERSION,
description="""
Binary classification dataset version separated in train, dev and test test.
A text is considered toxic if at least one of the multilabel classes were labeled
by at least one annotator.
""",
),
]
DEFAULT_CONFIG_NAME = "binary"
def _info(self):
if self.config.name == "binary":
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.ClassLabel(names=["not-toxic", "toxic"]),
}
)
else:
features = datasets.Features(
{
"text": datasets.Value("string"),
"homophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"obscene": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"insult": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"racism": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"misogyny": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"xenophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
if self.config.name == "binary":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_train_1annotator.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_test_1annotator.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_validation_1annotator.csv")},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir),
},
)
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, engine="python")
for key, row in enumerate(df.itertuples()):
if self.config.name == "multilabel":
yield key, {
"text": row.text,
"homophobia": int(float(row.homophobia)),
"obscene": int(float(row.obscene)),
"insult": int(float(row.insult)),
"racism": int(float(row.racism)),
"misogyny": int(float(row.misogyny)),
"xenophobia": int(float(row.xenophobia)),
}
else:
yield key, {"text": row.text, "label": int(row.toxic)}