Datasets:
Tasks:
Text Classification
Formats:
csv
Languages:
Portuguese
Size:
10K - 100K
Tags:
hate-speech-detection
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Toxic/Abusive Tweets Multilabel Classification Dataset for Brazilian Portuguese.""" | |
import os | |
import pandas as pd | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@article{DBLP:journals/corr/abs-2010-04543, | |
author = {Joao Augusto Leite and | |
Diego F. Silva and | |
Kalina Bontcheva and | |
Carolina Scarton}, | |
title = {Toxic Language Detection in Social Media for Brazilian Portuguese: | |
New Dataset and Multilingual Analysis}, | |
journal = {CoRR}, | |
volume = {abs/2010.04543}, | |
year = {2020}, | |
url = {https://arxiv.org/abs/2010.04543}, | |
eprinttype = {arXiv}, | |
eprint = {2010.04543}, | |
timestamp = {Tue, 15 Dec 2020 16:10:16 +0100}, | |
biburl = {https://dblp.org/rec/journals/corr/abs-2010-04543.bib}, | |
bibsource = {dblp computer science bibliography, https://dblp.org} | |
} | |
""" | |
_DESCRIPTION = """\ | |
ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced | |
by 42 annotators selected from a pool of 129 volunteers. Annotators were selected aiming | |
to create a plural group in terms of demographics (ethnicity, sexual orientation, age, gender). | |
Each tweet was labeled by three annotators in 6 possible categories: | |
LGBTQ+phobia,Xenophobia, Obscene, Insult, Misogyny and Racism. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "https://github.com/JAugusto97/ToLD-Br" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "https://github.com/JAugusto97/ToLD-Br/blob/main/LICENSE_ToLD-Br.txt " | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"multilabel": "https://raw.githubusercontent.com/JAugusto97/ToLD-Br/main/ToLD-BR.csv", | |
"binary": "https://github.com/JAugusto97/ToLD-Br/raw/main/experiments/data/1annotator.zip", | |
} | |
class ToldBr(datasets.GeneratorBasedBuilder): | |
"""Toxic/Abusive Tweets Classification Dataset for Brazilian Portuguese.""" | |
VERSION = datasets.Version("1.0.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="multilabel", | |
version=VERSION, | |
description=""" | |
Full multilabel dataset with target values ranging | |
from 0 to 3 representing the votes from each annotator. | |
""", | |
), | |
datasets.BuilderConfig( | |
name="binary", | |
version=VERSION, | |
description=""" | |
Binary classification dataset version separated in train, dev and test test. | |
A text is considered toxic if at least one of the multilabel classes were labeled | |
by at least one annotator. | |
""", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "binary" | |
def _info(self): | |
if self.config.name == "binary": | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=["not-toxic", "toxic"]), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"homophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]), | |
"obscene": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]), | |
"insult": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]), | |
"racism": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]), | |
"misogyny": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]), | |
"xenophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION | |
) | |
def _split_generators(self, dl_manager): | |
urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(urls) | |
if self.config.name == "binary": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_train_1annotator.csv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_test_1annotator.csv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_validation_1annotator.csv")}, | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir), | |
}, | |
) | |
] | |
def _generate_examples(self, filepath): | |
df = pd.read_csv(filepath, engine="python") | |
for key, row in enumerate(df.itertuples()): | |
if self.config.name == "multilabel": | |
yield key, { | |
"text": row.text, | |
"homophobia": int(float(row.homophobia)), | |
"obscene": int(float(row.obscene)), | |
"insult": int(float(row.insult)), | |
"racism": int(float(row.racism)), | |
"misogyny": int(float(row.misogyny)), | |
"xenophobia": int(float(row.xenophobia)), | |
} | |
else: | |
yield key, {"text": row.text, "label": int(row.toxic)} |