File size: 7,493 Bytes
bc9ddc5
c42eaa8
bc9ddc5
 
 
 
 
 
 
 
 
 
 
 
 
c42eaa8
 
bc9ddc5
c42eaa8
 
 
 
bc9ddc5
4bf6ee4
 
bc9ddc5
c42eaa8
 
4bf6ee4
c42eaa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9ddc5
4bf6ee4
 
 
c42eaa8
 
 
 
 
4bf6ee4
 
c42eaa8
 
 
 
 
4bf6ee4
c42eaa8
 
 
4bf6ee4
c42eaa8
 
 
 
4bf6ee4
 
c42eaa8
 
4bf6ee4
 
 
c42eaa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf6ee4
c42eaa8
 
4bf6ee4
 
c42eaa8
4bf6ee4
c42eaa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf6ee4
 
 
c42eaa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9ddc5
 
c42eaa8
 
 
 
 
 
 
 
 
 
 
bc9ddc5
c42eaa8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Toxic/Abusive Tweets Multilabel Classification Dataset for Brazilian Portuguese."""


import os

import pandas as pd

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/abs-2010-04543,
  author    = {Joao Augusto Leite and
               Diego F. Silva and
               Kalina Bontcheva and
               Carolina Scarton},
  title     = {Toxic Language Detection in Social Media for Brazilian Portuguese:
               New Dataset and Multilingual Analysis},
  journal   = {CoRR},
  volume    = {abs/2010.04543},
  year      = {2020},
  url       = {https://arxiv.org/abs/2010.04543},
  eprinttype = {arXiv},
  eprint    = {2010.04543},
  timestamp = {Tue, 15 Dec 2020 16:10:16 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2010-04543.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced
by 42 annotators selected from a pool of 129 volunteers. Annotators were selected aiming
to create a plural group in terms of demographics (ethnicity, sexual orientation, age, gender).
Each tweet was labeled by three annotators in 6 possible categories:
LGBTQ+phobia,Xenophobia, Obscene, Insult, Misogyny and Racism.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/JAugusto97/ToLD-Br"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "https://github.com/JAugusto97/ToLD-Br/blob/main/LICENSE_ToLD-Br.txt "

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)

_URLS = {
    "multilabel": "https://raw.githubusercontent.com/JAugusto97/ToLD-Br/main/ToLD-BR.csv",
    "binary": "https://github.com/JAugusto97/ToLD-Br/raw/main/experiments/data/1annotator.zip",
}


class ToldBr(datasets.GeneratorBasedBuilder):
    """Toxic/Abusive Tweets Classification Dataset for Brazilian Portuguese."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="multilabel",
            version=VERSION,
            description="""
            Full multilabel dataset with target values ranging
            from 0 to 3 representing the votes from each annotator.
            """,
        ),
        datasets.BuilderConfig(
            name="binary",
            version=VERSION,
            description="""
            Binary classification dataset version separated in train, dev and test test.
            A text is considered toxic if at least one of the multilabel classes were labeled
            by at least one annotator.
            """,
        ),
    ]

    DEFAULT_CONFIG_NAME = "binary"

    def _info(self):
        if self.config.name == "binary":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=["not-toxic", "toxic"]),
                }
            )
        else:
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "homophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
                    "obscene": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
                    "insult": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
                    "racism": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
                    "misogyny": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
                    "xenophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        if self.config.name == "binary":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_train_1annotator.csv")},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_test_1annotator.csv")},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_validation_1annotator.csv")},
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir),
                    },
                )
            ]

    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath, engine="python")
        for key, row in enumerate(df.itertuples()):
            if self.config.name == "multilabel":
                yield key, {
                    "text": row.text,
                    "homophobia": int(float(row.homophobia)),
                    "obscene": int(float(row.obscene)),
                    "insult": int(float(row.insult)),
                    "racism": int(float(row.racism)),
                    "misogyny": int(float(row.misogyny)),
                    "xenophobia": int(float(row.xenophobia)),
                }
            else:
                yield key, {"text": row.text, "label": int(row.toxic)}