Upload bat_classifier.ipynb
Browse files- bat_classifier.ipynb +372 -0
bat_classifier.ipynb
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "dedc2602",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Creating a convolutional network"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 5,
|
14 |
+
"id": "701fb5bd",
|
15 |
+
"metadata": {
|
16 |
+
"scrolled": true
|
17 |
+
},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"name": "stdout",
|
21 |
+
"output_type": "stream",
|
22 |
+
"text": [
|
23 |
+
"Model: \"sequential\"\n",
|
24 |
+
"_________________________________________________________________\n",
|
25 |
+
" Layer (type) Output Shape Param # \n",
|
26 |
+
"=================================================================\n",
|
27 |
+
" conv2d (Conv2D) (None, 228, 150, 20) 1520 \n",
|
28 |
+
" \n",
|
29 |
+
" dropout (Dropout) (None, 228, 150, 20) 0 \n",
|
30 |
+
" \n",
|
31 |
+
" conv2d_1 (Conv2D) (None, 224, 146, 20) 10020 \n",
|
32 |
+
" \n",
|
33 |
+
" dropout_1 (Dropout) (None, 224, 146, 20) 0 \n",
|
34 |
+
" \n",
|
35 |
+
" max_pooling2d (MaxPooling2D (None, 74, 48, 20) 0 \n",
|
36 |
+
" ) \n",
|
37 |
+
" \n",
|
38 |
+
" conv2d_2 (Conv2D) (None, 70, 44, 20) 10020 \n",
|
39 |
+
" \n",
|
40 |
+
" dropout_2 (Dropout) (None, 70, 44, 20) 0 \n",
|
41 |
+
" \n",
|
42 |
+
" conv2d_3 (Conv2D) (None, 66, 40, 10) 5010 \n",
|
43 |
+
" \n",
|
44 |
+
" dropout_3 (Dropout) (None, 66, 40, 10) 0 \n",
|
45 |
+
" \n",
|
46 |
+
" max_pooling2d_1 (MaxPooling (None, 22, 13, 10) 0 \n",
|
47 |
+
" 2D) \n",
|
48 |
+
" \n",
|
49 |
+
" flatten (Flatten) (None, 2860) 0 \n",
|
50 |
+
" \n",
|
51 |
+
" dense (Dense) (None, 4) 11444 \n",
|
52 |
+
" \n",
|
53 |
+
"=================================================================\n",
|
54 |
+
"Total params: 38,014\n",
|
55 |
+
"Trainable params: 38,014\n",
|
56 |
+
"Non-trainable params: 0\n",
|
57 |
+
"_________________________________________________________________\n"
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"import tensorflow as tf\n",
|
63 |
+
"from tensorflow.keras import models, layers\n",
|
64 |
+
"\n",
|
65 |
+
"conv_network = models.Sequential()\n",
|
66 |
+
"conv_network.add(layers.Conv2D(20, (5,5), activation='relu', input_shape=(232, 154, 3)))\n",
|
67 |
+
"conv_network.add(layers.Dropout(0.2))\n",
|
68 |
+
"conv_network.add(layers.Conv2D(20, (5,5), activation='relu'))\n",
|
69 |
+
"conv_network.add(layers.Dropout(0.2))\n",
|
70 |
+
"conv_network.add(layers.MaxPooling2D(3,3))\n",
|
71 |
+
"conv_network.add(layers.Conv2D(20, (5,5), activation='relu'))\n",
|
72 |
+
"conv_network.add(layers.Dropout(0.2))\n",
|
73 |
+
"conv_network.add(layers.Conv2D(10, (5,5), activation='relu'))\n",
|
74 |
+
"conv_network.add(layers.Dropout(0.2))\n",
|
75 |
+
"conv_network.add(layers.MaxPooling2D(3,3))\n",
|
76 |
+
"conv_network.add(layers.Flatten())\n",
|
77 |
+
"conv_network.add(layers.Dense(4, activation='softmax'))\n",
|
78 |
+
"\n",
|
79 |
+
"optimizer=tf.keras.optimizers.Adam(learning_rate=0.02)\n",
|
80 |
+
"\n",
|
81 |
+
"conv_network.compile(optimizer=optimizer, loss='mse', metrics=['accuracy'])\n",
|
82 |
+
"\n",
|
83 |
+
"conv_network.summary()"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "markdown",
|
88 |
+
"id": "4ab96d93",
|
89 |
+
"metadata": {},
|
90 |
+
"source": [
|
91 |
+
"# Loading in the data"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 20,
|
97 |
+
"id": "2a6353d7",
|
98 |
+
"metadata": {
|
99 |
+
"scrolled": true
|
100 |
+
},
|
101 |
+
"outputs": [
|
102 |
+
{
|
103 |
+
"name": "stdout",
|
104 |
+
"output_type": "stream",
|
105 |
+
"text": [
|
106 |
+
"Found 2008 files belonging to 4 classes.\n",
|
107 |
+
"Using 1607 files for training.\n",
|
108 |
+
"Found 2008 files belonging to 4 classes.\n",
|
109 |
+
"Using 401 files for validation.\n"
|
110 |
+
]
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"source": [
|
114 |
+
"data_dir = \"/Users/kerickwalker/src/dis/deep_learning/bat_data\"\n",
|
115 |
+
"\n",
|
116 |
+
"img_width = 154\n",
|
117 |
+
"img_height = 232\n",
|
118 |
+
"batch_size = 128\n",
|
119 |
+
"\n",
|
120 |
+
"# Load in the training data\n",
|
121 |
+
"training_data = tf.keras.utils.image_dataset_from_directory(\n",
|
122 |
+
" data_dir,\n",
|
123 |
+
" validation_split=0.2,\n",
|
124 |
+
" subset=\"training\",\n",
|
125 |
+
" seed=123,\n",
|
126 |
+
" image_size=(img_height, img_width),\n",
|
127 |
+
" batch_size=batch_size)\n",
|
128 |
+
"\n",
|
129 |
+
"# Load in validation data\n",
|
130 |
+
"validation_data = tf.keras.utils.image_dataset_from_directory(\n",
|
131 |
+
" data_dir,\n",
|
132 |
+
" validation_split=0.2,\n",
|
133 |
+
" subset=\"validation\",\n",
|
134 |
+
" seed=123,\n",
|
135 |
+
" image_size=(img_height, img_width),\n",
|
136 |
+
" batch_size=batch_size)"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "markdown",
|
141 |
+
"id": "cd4adeaa",
|
142 |
+
"metadata": {},
|
143 |
+
"source": [
|
144 |
+
"# Training convolutional network"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"id": "c1d53cef",
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"conv_network.fit(training_data, validation_data=validation_data, epochs=10)"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "markdown",
|
159 |
+
"id": "8a22d520",
|
160 |
+
"metadata": {},
|
161 |
+
"source": [
|
162 |
+
"# Transfer Learning with MobileNetV2"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "markdown",
|
167 |
+
"id": "7451e896",
|
168 |
+
"metadata": {},
|
169 |
+
"source": [
|
170 |
+
"#### Convert dataset to numpy array for preprocessing"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 23,
|
176 |
+
"id": "32c2dd65",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"import tensorflow as tf\n",
|
181 |
+
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
182 |
+
"from tensorflow.keras.applications import MobileNetV2\n",
|
183 |
+
"from tensorflow.keras import layers, models"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": 24,
|
189 |
+
"id": "bcff2372",
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [],
|
192 |
+
"source": [
|
193 |
+
"img_size = (232, 154) # MobileNetV2 input size\n",
|
194 |
+
"batch_size = 32\n",
|
195 |
+
"data_dir = \"/Users/kerickwalker/src/dis/deep_learning/bat_data\""
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": 25,
|
201 |
+
"id": "26d31c9f",
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [
|
204 |
+
{
|
205 |
+
"name": "stdout",
|
206 |
+
"output_type": "stream",
|
207 |
+
"text": [
|
208 |
+
"Found 2008 images belonging to 4 classes.\n"
|
209 |
+
]
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"train_datagen = ImageDataGenerator(\n",
|
214 |
+
" rescale=1./255,\n",
|
215 |
+
" rotation_range=20,\n",
|
216 |
+
" width_shift_range=0.2,\n",
|
217 |
+
" height_shift_range=0.2,\n",
|
218 |
+
" shear_range=0.2,\n",
|
219 |
+
" zoom_range=0.2,\n",
|
220 |
+
" horizontal_flip=True,\n",
|
221 |
+
" fill_mode='nearest'\n",
|
222 |
+
")\n",
|
223 |
+
"\n",
|
224 |
+
"train_generator = train_datagen.flow_from_directory(\n",
|
225 |
+
" data_dir,\n",
|
226 |
+
" target_size=img_size,\n",
|
227 |
+
" batch_size=batch_size,\n",
|
228 |
+
" class_mode='categorical',\n",
|
229 |
+
" shuffle=True\n",
|
230 |
+
")"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 26,
|
236 |
+
"id": "cf420374",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"name": "stdout",
|
241 |
+
"output_type": "stream",
|
242 |
+
"text": [
|
243 |
+
"WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
|
244 |
+
]
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"source": [
|
248 |
+
"base_model = MobileNetV2(\n",
|
249 |
+
" input_shape=(232, 154, 3),\n",
|
250 |
+
" include_top=False,\n",
|
251 |
+
" weights='imagenet'\n",
|
252 |
+
")"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 27,
|
258 |
+
"id": "e7e027fb",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [],
|
261 |
+
"source": [
|
262 |
+
"for layer in base_model.layers:\n",
|
263 |
+
" layer.trainable = False"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": 28,
|
269 |
+
"id": "2bd9014d",
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [],
|
272 |
+
"source": [
|
273 |
+
"model = models.Sequential()\n",
|
274 |
+
"model.add(base_model)\n",
|
275 |
+
"model.add(layers.GlobalAveragePooling2D())\n",
|
276 |
+
"model.add(layers.Dense(256, activation='relu'))\n",
|
277 |
+
"model.add(layers.Dropout(0.5))\n",
|
278 |
+
"model.add(layers.Dense(4, activation='softmax'))"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 29,
|
284 |
+
"id": "04aef745",
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [],
|
287 |
+
"source": [
|
288 |
+
"model.compile(\n",
|
289 |
+
" optimizer='adam',\n",
|
290 |
+
" loss='categorical_crossentropy',\n",
|
291 |
+
" metrics=['accuracy']\n",
|
292 |
+
")"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 30,
|
298 |
+
"id": "4f624f89",
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [
|
301 |
+
{
|
302 |
+
"name": "stdout",
|
303 |
+
"output_type": "stream",
|
304 |
+
"text": [
|
305 |
+
"Epoch 1/10\n"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"name": "stderr",
|
310 |
+
"output_type": "stream",
|
311 |
+
"text": [
|
312 |
+
"2023-11-30 18:29:04.053048: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype int32\n",
|
313 |
+
"\t [[{{node Placeholder/_0}}]]\n"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"name": "stdout",
|
318 |
+
"output_type": "stream",
|
319 |
+
"text": [
|
320 |
+
"62/62 [==============================] - 38s 560ms/step - loss: 0.6074 - accuracy: 0.7657\n",
|
321 |
+
"Epoch 2/10\n",
|
322 |
+
"62/62 [==============================] - 44s 715ms/step - loss: 0.2596 - accuracy: 0.9018\n",
|
323 |
+
"Epoch 3/10\n",
|
324 |
+
"62/62 [==============================] - 50s 809ms/step - loss: 0.2202 - accuracy: 0.9165\n",
|
325 |
+
"Epoch 4/10\n",
|
326 |
+
"62/62 [==============================] - 52s 833ms/step - loss: 0.1985 - accuracy: 0.9276\n",
|
327 |
+
"Epoch 5/10\n",
|
328 |
+
"62/62 [==============================] - 51s 822ms/step - loss: 0.1963 - accuracy: 0.9276\n",
|
329 |
+
"Epoch 6/10\n",
|
330 |
+
"62/62 [==============================] - 57s 922ms/step - loss: 0.2040 - accuracy: 0.9236\n",
|
331 |
+
"Epoch 7/10\n",
|
332 |
+
"62/62 [==============================] - 57s 912ms/step - loss: 0.1698 - accuracy: 0.9357\n",
|
333 |
+
"Epoch 8/10\n",
|
334 |
+
"62/62 [==============================] - 52s 834ms/step - loss: 0.1672 - accuracy: 0.9332\n",
|
335 |
+
"Epoch 9/10\n",
|
336 |
+
"62/62 [==============================] - 50s 795ms/step - loss: 0.1603 - accuracy: 0.9408\n",
|
337 |
+
"Epoch 10/10\n",
|
338 |
+
"62/62 [==============================] - 48s 778ms/step - loss: 0.1711 - accuracy: 0.9332\n"
|
339 |
+
]
|
340 |
+
}
|
341 |
+
],
|
342 |
+
"source": [
|
343 |
+
"history = model.fit(\n",
|
344 |
+
" train_generator,\n",
|
345 |
+
" steps_per_epoch=train_generator.samples // batch_size,\n",
|
346 |
+
" epochs=10\n",
|
347 |
+
")"
|
348 |
+
]
|
349 |
+
}
|
350 |
+
],
|
351 |
+
"metadata": {
|
352 |
+
"kernelspec": {
|
353 |
+
"display_name": "disdl",
|
354 |
+
"language": "python",
|
355 |
+
"name": "disdl"
|
356 |
+
},
|
357 |
+
"language_info": {
|
358 |
+
"codemirror_mode": {
|
359 |
+
"name": "ipython",
|
360 |
+
"version": 3
|
361 |
+
},
|
362 |
+
"file_extension": ".py",
|
363 |
+
"mimetype": "text/x-python",
|
364 |
+
"name": "python",
|
365 |
+
"nbconvert_exporter": "python",
|
366 |
+
"pygments_lexer": "ipython3",
|
367 |
+
"version": "3.11.5"
|
368 |
+
}
|
369 |
+
},
|
370 |
+
"nbformat": 4,
|
371 |
+
"nbformat_minor": 5
|
372 |
+
}
|