import os import json import google import argparse from glob import glob from typing import Optional, Sequence from google.api_core.client_options import ClientOptions from google.cloud import documentai from utils import read_file_paths, validate_json_save_path, load_json_file CATEGORY_MAP = { "paragraph": "paragraph", "footer": "footer", "header": "header", "heading-1": "heading1", "heading-2": "heading1", "heading-3": "heading1", "table": "table", "title": "heading1" } class GoogleInference: def __init__( self, save_path, input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] ): """Initialize the GoogleInference class Args: save_path (str): the json path to save the results input_formats (list, optional): the supported file formats. """ self.project_id = os.getenv("GOOGLE_PROJECT_ID") or "" self.processor_id = os.getenv("GOOGLE_PROCESSOR_ID") or "" self.location = os.getenv("GOOGLE_LOCATION") or "" self.endpoint = os.getenv("GOOGLE_ENDPOINT") or "" if not all([self.project_id, self.processor_id, self.location, self.endpoint]): raise ValueError("Please set the environment variables for Google Cloud") self.processor_version = "rc" validate_json_save_path(save_path) self.save_path = save_path self.processed_data = load_json_file(save_path) self.formats = input_formats @staticmethod def generate_html_table(table_data): html = "\n" # Process body rows for row in table_data["bodyRows"]: html += " \n" for cell in row["cells"]: text = cell["blocks"][0]["textBlock"]["text"] if cell["blocks"] else "" row_span = f" rowspan='{cell['rowSpan']}'" if cell["rowSpan"] > 1 else "" col_span = f" colspan='{cell['colSpan']}'" if cell["colSpan"] > 1 else "" html += f" {text}\n" html += " \n" html += "
" return html @staticmethod def iterate_blocks(data): block_sequence = [] def recurse_blocks(blocks): for block in blocks: block_id = block.get("blockId", "") block_type = block.get("textBlock", {}).get("type", "") block_text = block.get("textBlock", {}).get("text", "") if block_type: # Append block information as a tuple to the sequence list block_sequence.append((block_id, block_type, block_text)) block_id = block.get("blockId", "") block_table = block.get("tableBlock", {}) if block_table: block_table_html = GoogleInference.generate_html_table(block_table) block_sequence.append((block_id, "table", block_table_html)) # If the block contains sub-blocks, recurse through them if block.get("textBlock", {}).get("blocks", []): recurse_blocks(block["textBlock"]["blocks"]) if "documentLayout" in data: recurse_blocks(data["documentLayout"].get("blocks", [])) return block_sequence def post_process(self, data): processed_dict = {} for input_key in data.keys(): output_data = data[input_key] processed_dict[input_key] = { "elements": [] } blocks = self.iterate_blocks(output_data) id_counter = 0 for _, category, transcription in blocks: category = CATEGORY_MAP.get(category, "paragraph") data_dict = { "coordinates": [[0, 0], [0, 0], [0, 0], [0, 0]], "category": category, "id": id_counter, "content": { "text": transcription if category != "table" else "", "html": transcription if category == "table" else "", "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) id_counter += 1 for key in self.processed_data: processed_dict[key] = self.processed_data[key] return processed_dict def process_document_layout_sample(self, file_path, mime_type, chunk_size=1000) -> None: process_options = documentai.ProcessOptions( layout_config=documentai.ProcessOptions.LayoutConfig( chunking_config=documentai.ProcessOptions.LayoutConfig.ChunkingConfig( chunk_size=chunk_size, include_ancestor_headings=True, ) ) ) document = self.process_document( file_path, mime_type, process_options=process_options, ) document_dict = json.loads(google.cloud.documentai_v1.Document.to_json(document)) return document_dict def process_document( self, file_path, mime_type: str, process_options: Optional[documentai.ProcessOptions] = None, ) -> documentai.Document: client = documentai.DocumentProcessorServiceClient( client_options=ClientOptions( api_endpoint=f"{self.endpoint}" ) ) with open(file_path, "rb") as image: image_content = image.read() name = client.processor_version_path( self.project_id, self.location, self.processor_id, self.processor_version ) request = documentai.ProcessRequest( name=name, raw_document=documentai.RawDocument( content=image_content, mime_type=mime_type ), process_options=process_options, ) result = client.process_document(request=request) return result.document def infer(self, file_path): """Infer the layout of the documents in the given file path Args: file_path (str): the path to the file or directory containing the documents to process """ paths = read_file_paths(file_path, supported_formats=self.formats) error_files = [] result_dict = {} for idx, filepath in enumerate(paths): print("({}/{}) {}".format(idx+1, len(paths), filepath)) if filepath.suffix == ".pdf": mime_type = "application/pdf" elif filepath.suffix == ".jpg" or filepath.suffix == ".jpeg": mime_type = "image/jpeg" elif filepath.suffix == ".png": mime_type = "image/png" else: raise NotImplementedError filename = filepath.name if filename in self.processed_data.keys(): print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") continue try: document_dict = self.process_document_layout_sample(filepath, mime_type) except Exception as e: print(e) print("Error processing document..") error_files.append(filepath) continue result_dict[filename] = document_dict result_dict = self.post_process(result_dict) with open(self.save_path, "w") as f: json.dump(result_dict, f) for error_file in error_files: print(f"Error processing file: {error_file}") print("Finished processing all documents") print("Results saved to: {}".format(self.save_path)) print("Number of errors: {}".format(len(error_files))) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument( "--data_path", type=str, default="", required=True, help="Path containing the documents to process" ) args.add_argument( "--save_path", type=str, default="", required=True, help="Path to save the results" ) args.add_argument( "--input_formats", type=list, default=[ ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" ], help="Supported input file formats" ) args = args.parse_args() google_inference = GoogleInference( args.save_path, input_formats=args.input_formats ) google_inference.infer(args.data_path)