import os import json import argparse from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential from utils import read_file_paths, validate_json_save_path, load_json_file CATEGORY_MAP = { "Title": "heading1", "SectionHeading": "heading1", "footnote": "footnote", "PageHeader": "header", "PageFooter": "footer", "Paragraph": "paragraph", "Subheading": "heading1", "SectionMarks": "paragraph", "PageNumber": "paragraph" } class MicrosoftInference: def __init__( self, save_path, input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] ): """Initialize the MicrosoftInference class Args: save_path (str): the json path to save the results input_formats (list, optional): the supported file formats. """ KEY = os.getenv("MICROSOFT_API_KEY") or "" ENDPOINT = os.getenv("MICROSOFT_ENDPOINT") or "" self.document_analysis_client = DocumentAnalysisClient( endpoint=ENDPOINT, credential=AzureKeyCredential(KEY) ) validate_json_save_path(save_path) self.save_path = save_path self.processed_data = load_json_file(save_path) self.formats = input_formats def post_process(self, data): processed_dict = {} for input_key in data.keys(): output_data = data[input_key] processed_dict[input_key] = { "elements": [] } id_counter = 0 for par_elem in output_data["paragraphs"]: category = par_elem["role"] category = CATEGORY_MAP.get(category, "paragraph") transcription = par_elem["content"] coord = [[pt["x"], pt["y"]] for pt in par_elem["bounding_regions"][0]["polygon"]] xy_coord = [{"x": x, "y": y} for x, y in coord] data_dict = { "coordinates": xy_coord, "category": category, "id": id_counter, "content": { "text": transcription, "html": "", "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) id_counter += 1 html_transcription = "" for table_elem in output_data["tables"]: coord = [[pt["x"], pt["y"]] for pt in table_elem["bounding_regions"][0]["polygon"]] xy_coord = [{"x": x, "y": y} for x, y in coord] category = "table" html_transcription += "" # Create a matrix to represent the table table_matrix = [ ["" for _ in range(table_elem["column_count"])] for _ in range(table_elem["row_count"]) ] # Fill the matrix with table data for cell in table_elem["cells"]: row = cell["row_index"] col = cell["column_index"] rowspan = cell.get("row_span", 1) colspan = cell.get("column_span", 1) content = cell["content"] # Insert content into the matrix, handle rowspan and colspan for r in range(row, row + rowspan): for c in range(col, col + colspan): if r == row and c == col: table_matrix[r][c] = f"" else: # Mark cells covered by rowspan or colspan table_matrix[r][c] = None # Generate HTML from the matrix for row in table_matrix: html_transcription += "" for cell in row: if cell is not None: html_transcription += f"{cell}" html_transcription += "" html_transcription += "
{content}
" data_dict = { "coordinates": xy_coord, "category": category, "id": id_counter, "content": { "text": "", "html": html_transcription, "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) id_counter += 1 for key in self.processed_data: processed_dict[key] = self.processed_data[key] return processed_dict def infer(self, file_path): """Infer the layout of the documents in the given file path Args: file_path (str): the path to the file or directory containing the documents to process """ paths = read_file_paths(file_path, supported_formats=self.formats) error_files = [] result_dict = {} for idx, filepath in enumerate(paths): print("({}/{}) {}".format(idx+1, len(paths), filepath)) filename = filepath.name if filename in self.processed_data.keys(): print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") continue input_data = open(filepath, "rb") try: poller = self.document_analysis_client.begin_analyze_document( "prebuilt-layout", document=input_data ) result = poller.result() json_result = result.to_dict() except Exception as e: print(e) print("Error processing document..") error_files.append(filepath) continue result_dict[filename] = json_result result_dict = self.post_process(result_dict) with open(self.save_path, "w") as f: json.dump(result_dict, f) for error_file in error_files: print(f"Error processing file: {error_file}") print("Finished processing all documents") print("Results saved to: {}".format(self.save_path)) print("Number of errors: {}".format(len(error_files))) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument( "--data_path", type=str, default="", required=True, help="Path containing the documents to process" ) args.add_argument( "--save_path", type=str, default="", required=True, help="Path to save the results" ) args.add_argument( "--input_formats", type=str, default=[ ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" ], help="Supported input file formats" ) args = args.parse_args() microsoft_inference = MicrosoftInference( args.save_path, input_formats=args.input_formats ) microsoft_inference.infer(args.data_path)