import os import cv2 import json import time import boto3 import argparse from utils import read_file_paths, validate_json_save_path, load_json_file CATEGORY_MAP = { "LAYOUT_TEXT": "paragraph", "LAYOUT_LIST": "list", "LAYOUT_HEADER": "header", "LAYOUT_FOOTER": "footer", "LAYOUT_PAGE_NUMBER": "paragraph", "LAYOUT_FIGURE": "figure", "LAYOUT_TABLE": "table", "LAYOUT_TITLE": "heading1", "LAYOUT_SECTION_HEADER": "heading1", "TABLE": "table" } class AWSInference: def __init__( self, save_path, input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] ): """Initialize the AWSInference class Args: save_path (str): the json path to save the results input_formats (list, optional): the supported file formats. """ AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") or "" AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") or "" AWS_REGION = os.getenv("AWS_REGION") or "" AWS_S3_BUCKET_NAME = os.getenv("AWS_S3_BUCKET_NAME") or "" if not all([AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION, AWS_S3_BUCKET_NAME]): raise ValueError("Please set the environment variables for AWS") self.client = boto3.client( "textract", region_name=AWS_REGION, aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY ) self.s3 = boto3.resource("s3") self.s3_bucket_name = AWS_S3_BUCKET_NAME validate_json_save_path(save_path) self.save_path = save_path self.processed_data = load_json_file(save_path) self.formats = input_formats def post_process(self, data): def get_text(result, blocks_map): text = "" if "Relationships" in result: for relationship in result["Relationships"]: if relationship["Type"] == "CHILD": for child_id in relationship["Ids"]: word = blocks_map[child_id] if word["BlockType"] == "WORD": text += " " + word["Text"] return text[1:] processed_dict = {} for input_key in data.keys(): output_data = data[input_key] processed_dict[input_key] = { "elements": [] } all_elems = {} for page_data in output_data: for elem in page_data["Blocks"]: _id = elem["Id"] all_elems[_id] = elem for page_data in output_data: for idx, elem in enumerate(page_data["Blocks"]): if elem["BlockType"] == "LAYOUT_LIST": continue if "LAYOUT" in elem["BlockType"] and elem["BlockType"] != "LAYOUT_TABLE": bbox = elem["Geometry"]["BoundingBox"] x = bbox["Left"] y = bbox["Top"] w = bbox["Width"] h = bbox["Height"] coord = [ [x, y], [x + w, y], [x + w, y + h], [x, y + h] ] xy_coord = [{"x": x, "y": y} for x, y in coord] category = CATEGORY_MAP.get(elem["BlockType"], "paragraph") transcription = "" if elem["BlockType"] != "LAYOUT_FIGURE": for item in all_elems[elem["Id"]]["Relationships"]: for id_ in item["Ids"]: if all_elems[id_]["BlockType"] == "LINE": word = all_elems[id_]["Text"] transcription += word + "\n" data_dict = { "coordinates": xy_coord, "category": category, "id": idx, "content": { "text": transcription, "html": "", "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) elif elem["BlockType"] == "TABLE": bbox = elem["Geometry"]["BoundingBox"] x = bbox["Left"] y = bbox["Top"] w = bbox["Width"] h = bbox["Height"] coord = [ [x, y], [x + w, y], [x + w, y + h], [x, y + h] ] xy_coord = [{"x": x, "y": y} for x, y in coord] category = CATEGORY_MAP.get(elem["BlockType"], "paragraph") table_cells = {} for relationship in elem["Relationships"]: if relationship["Type"] == "CHILD": for cell_id in relationship["Ids"]: cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None) if cell_block is not None and cell_block["BlockType"] == "CELL": row_index = cell_block["RowIndex"] - 1 column_index = cell_block["ColumnIndex"] - 1 row_span = cell_block["RowSpan"] column_span = cell_block["ColumnSpan"] table_cells[(row_index, column_index)] = { "block": cell_block, "span": (row_span, column_span), "text": get_text(cell_block, all_elems), } max_row_index = max(cell[0] for cell in table_cells.keys()) max_column_index = max(cell[1] for cell in table_cells.keys()) for relationship in elem["Relationships"]: if relationship["Type"] == "MERGED_CELL": for cell_id in relationship["Ids"]: cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None) if cell_block is not None and cell_block["BlockType"] == "MERGED_CELL": row_index = cell_block["RowIndex"] - 1 column_index = cell_block["ColumnIndex"] - 1 row_span = cell_block["RowSpan"] column_span = cell_block["ColumnSpan"] for i in range(row_span): for j in range(column_span): del table_cells[(row_index + i, column_index + j)] text = "" for child_ids in cell_block["Relationships"][0]["Ids"]: child_cell_block = next((block for block in page_data["Blocks"] if block["Id"] == child_ids), None) text += " " + get_text(child_cell_block, all_elems) table_cells[(row_index, column_index)] = { "block": cell_block, "span": (row_span, column_span), "text": text[1:], } html_table = "" for row_index in range(max_row_index + 1): html_table += "" for column_index in range(max_column_index + 1): cell_data = table_cells.get((row_index, column_index)) if cell_data: cell_block = cell_data["block"] row_span, column_span = cell_data["span"] cell_text = cell_data["text"] html_table += f"" html_table += "" html_table += "
{cell_text}
" data_dict = { "coordinates": xy_coord, "category": category, "id": idx, "content": { "text": "", "html": html_table, "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) for key in self.processed_data: processed_dict[key] = self.processed_data[key] return processed_dict def start_job(self, object_name): filename_with_ext = os.path.basename(object_name) print(f"uploading {filename_with_ext} to s3") self.s3.Bucket(self.s3_bucket_name).upload_file(object_name, filename_with_ext) response = None response = self.client.start_document_analysis( DocumentLocation={ "S3Object": { "Bucket": self.s3_bucket_name, "Name": filename_with_ext } }, FeatureTypes = ["LAYOUT", "TABLES"] ) return response["JobId"] def is_job_complete(self, job_id): time.sleep(1) response = self.client.get_document_analysis(JobId=job_id) status = response["JobStatus"] print("Job status: {}".format(status)) while(status == "IN_PROGRESS"): time.sleep(1) response = self.client.get_document_analysis(JobId=job_id) status = response["JobStatus"] print("Job status: {}".format(status)) return status def get_job_results(self, job_id): pages = [] time.sleep(1) response = self.client.get_document_analysis(JobId=job_id) pages.append(response) print("Resultset page received: {}".format(len(pages))) next_token = None if "NextToken" in response: next_token = response["NextToken"] while next_token: time.sleep(1) response = self.client.\ get_document_analysis(JobId=job_id, NextToken=next_token) pages.append(response) print("Resultset page received: {}".format(len(pages))) next_token = None if "NextToken" in response: next_token = response["NextToken"] return pages def infer(self, file_path): """Infer the layout of the documents in the given file path Args: file_path (str): the path to the file or directory containing the documents to process """ paths = read_file_paths(file_path, supported_formats=self.formats) error_files = [] result_dict = {} for idx, filepath in enumerate(paths): print("({}/{}) {}".format(idx+1, len(paths), filepath)) filename = filepath.name if filename in self.processed_data.keys(): print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") continue try: if os.path.splitext(filepath)[-1] == ".pdf": job_id = self.start_job(filepath) print("Started job with id: {}".format(job_id)) if self.is_job_complete(job_id): result = self.get_job_results(job_id) else: with open(filepath, "rb") as file: img_test = file.read() bytes_test = bytearray(img_test) result = self.client.analyze_document( Document={"Bytes": bytes_test}, FeatureTypes = ["LAYOUT", "TABLES"] ) except Exception as e: print(e) print("Error processing document..") error_files.append(filepath) continue result_dict[filename] = result result_dict = self.post_process(result_dict) with open(self.save_path, "w", encoding="utf-8") as f: json.dump(result_dict, f, ensure_ascii=False, indent=4) for error_file in error_files: print(f"Error processing file: {error_file}") print("Finished processing all documents") print("Results saved to: {}".format(self.save_path)) print("Number of errors: {}".format(len(error_files))) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument( "--data_path", type=str, default="", required=True, help="Path containing the documents to process" ) args.add_argument( "--save_path", type=str, default="", required=True, help="Path to save the results" ) args.add_argument( "--input_formats", type=list, default=[ ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" ], help="Supported input file formats" ) args = args.parse_args() aws_inference = AWSInference( args.save_path, input_formats=args.input_formats ) aws_inference.infer(args.data_path)