""" Most of the code in this file is derived from the paper "Image-based table recognition: data, model, and evaluation". The original paper can be accessed at: https://arxiv.org/pdf/1911.10683. The code is available at: https://github.com/ibm-aur-nlp/PubTabNet. A slight modification has been added to the code to improve the evaluation process. """ import re import distance from lxml import etree, html from collections import deque from apted.helpers import Tree from apted import APTED, Config class TableTree(Tree): """Table Tree class for APTED""" def __init__(self, tag, colspan=None, rowspan=None, content=None, *children): self.tag = tag self.colspan = colspan self.rowspan = rowspan self.content = content self.children = list(children) def bracket(self): """Show tree using brackets notation""" if self.tag == 'td': result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \ (self.tag, self.colspan, self.rowspan, self.content) else: result = '"tag": %s' % self.tag for child in self.children: result += child.bracket() return "{{{}}}".format(result) class CustomConfig(Config): """Custom Configuration for APTED""" @staticmethod def maximum(*sequences): """Get maximum possible value""" return max(map(len, sequences)) def normalized_distance(self, *sequences): """Get distance from 0 to 1""" return float(distance.levenshtein(*sequences)) / self.maximum(*sequences) def rename(self, node1, node2): """Compares attributes of trees""" if (node1.tag != node2.tag) or \ (node1.colspan != node2.colspan) or \ (node1.rowspan != node2.rowspan): return 1. if node1.tag == 'td': if node1.content or node2.content: return self.normalized_distance( node1.content, node2.content ) return 0. class TEDSEvaluator(object): """Tree Edit Distance basead Similarity""" def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None): assert isinstance(n_jobs, int) and (n_jobs >= 1), ( 'n_jobs must be an integer greather than 1' ) self.structure_only = structure_only self.n_jobs = n_jobs self.ignore_nodes = ignore_nodes self.__tokens__ = [] def tokenize(self, node): """Tokenizes table cells""" self.__tokens__.append('<%s>' % node.tag) if node.text is not None: self.__tokens__ += list(node.text) for n in node.getchildren(): self.tokenize(n) if node.tag != 'unk': self.__tokens__.append('' % node.tag) if node.tag != 'td' and node.tail is not None: self.__tokens__ += list(node.tail) def load_html_tree(self, node, parent=None): """Converts HTML tree to the format required by apted""" global __tokens__ if node.tag == 'td': if self.structure_only: cell = [] else: self.__tokens__ = [] self.tokenize(node) cell = self.__tokens__[1:-1].copy() new_node = TableTree( node.tag, int(node.attrib.get('colspan', '1')), int(node.attrib.get('rowspan', '1')), cell, *deque() ) else: new_node = TableTree(node.tag, None, None, None, *deque()) if parent is not None: parent.children.append(new_node) if node.tag != 'td': for n in node.getchildren(): self.load_html_tree(n, new_node) if parent is None: return new_node def evaluate(self, pred, true): """Computes TEDS score between the prediction and the ground truth of a given sample""" if (not pred) or (not true): return 0.0 parser = html.HTMLParser(remove_comments=True, encoding='utf-8') pred = html.fromstring(pred, parser=parser) true = html.fromstring(true, parser=parser) if pred.xpath('body/table') and true.xpath('body/table'): pred = pred.xpath('body/table')[0] true = true.xpath('body/table')[0] if self.ignore_nodes: etree.strip_tags(pred, *self.ignore_nodes) etree.strip_tags(true, *self.ignore_nodes) n_nodes_pred = len(pred.xpath('.//*')) n_nodes_true = len(true.xpath('.//*')) n_nodes = max(n_nodes_pred, n_nodes_true) tree_pred = self.load_html_tree(pred) tree_true = self.load_html_tree(true) distance = APTED(tree_pred, tree_true, CustomConfig()).compute_edit_distance() return 1.0 - (float(distance) / n_nodes) else: return 0.0 def get_table_contents(text): # Regular expression to capture content within and
tags table_contents = re.findall(r']*?>(.*?)', text, flags=re.DOTALL) if len(table_contents) == 0: table_contents = [text] return table_contents def extract_tables(data : dict) -> str: """Extract tables from the dictionary data. Args: data (dict): The data to extract tables from. Returns: str: The extracted tables from the data and a boolean indicating if the data has a table. """ # return as is if data is a string html = '' for elem in data['elements']: if elem['category'].lower() == 'table': table_html_elements = get_table_contents(elem['content']['html']) for table_html in table_html_elements: html += f'{table_html}
' html += '' return html def has_table_content(html_data : str) -> bool: """Check if the table has content between and . Args: html_data (str): The html data to check. Returns: bool: True if the table has content, False otherwise """ has_content = True if html_data.replace('', '').replace('', '') == '': has_content = False return has_content def prepare_table_dataset(gt_data, pred_data): """Prepare the tables for evaluation. Args: gt_data (dict): The ground truth dataset to evaluate. pred_data (dict): The predicted dataset to evaluate. Returns: tuple (list, list): The list of ground truth and predicted tables. """ gt_table_list = [] pred_table_list = [] for image_key in gt_data.keys(): gt_elem = gt_data.get(image_key) pred_elem = pred_data.get(image_key) gt_tables = extract_tables(gt_elem) pred_tables = extract_tables(pred_elem) if not has_table_content(gt_tables): continue gt_table_list.append(gt_tables) pred_table_list.append(pred_tables) return gt_table_list, pred_table_list def calc_table_score(gt_string, pred_string, evaluator): """Calculate the table evaluation score between the gold and pred strings. Args: gt_string (str): The ground truth html string to compare. pred_string (str): The predicted html string to compare. evaluator (TEDS/TEDS-S): The TEDS/TEDS-S evaluator to use. Returns: float: The table evaluation score. """ refined_pred = pred_string refined_gold = gt_string if pred_string.startswith('') and pred_string.endswith('
'): refined_pred = '' + pred_string + '' elif not pred_string.startswith('') and not pred_string.endswith('
'): refined_pred = '' + refined_pred + '
' if gt_string.startswith('') and gt_string.endswith('
'): refined_gold = '' + gt_string + '' elif not gt_string.startswith('') and not gt_string.endswith('
'): refined_gold = '' + refined_gold + '
' # remove thead and tbody for tok in ['', '', '', '']: refined_pred = refined_pred.replace(tok, '') refined_gold = refined_gold.replace(tok, '') score = evaluator.evaluate(refined_pred, refined_gold) return score def evaluate_table( gt : dict, pred : dict ) -> tuple: """Evaluate the table of the gt against the pred. Args: gt (dict): The gt layout to evaluate. pred (dict): The pred layout to evaluate against. Returns: tuple(float, float): The TEDS and TEDS-S scores for the table evaluation. """ gt_table_list, pred_table_list = prepare_table_dataset(gt, pred) avg_teds_score = 0.0 avg_teds_s_score = 0.0 if len(gt_table_list) == 0: print('[Warning] No tables found in the ground truth dataset.') elif len(pred_table_list) == 0: print('[Warning] No tables found in the prediction dataset.') else: # Construct Table Evaluator for TEDS # TEDS only evaluates the structure of the table table_evaluator = TEDSEvaluator(structure_only=True) teds_s_scores = [] for gt_table_elem, pred_table_elem in zip(gt_table_list, pred_table_list): teds_s_score = calc_table_score(gt_table_elem, pred_table_elem, table_evaluator) teds_s_scores.append(teds_s_score) avg_teds_s_score= sum(teds_s_scores) / len(teds_s_scores) # Construct Table Evaluator for TEDS-S # TEDS-S evaluates the structure and content of the table table_evaluator = TEDSEvaluator(structure_only=False) teds_scores = [] for gt_table_elem, pred_table_elem in zip(gt_table_list, pred_table_list): teds_score = calc_table_score(gt_table_elem, pred_table_elem, table_evaluator) teds_scores.append(teds_score) avg_teds_score = sum(teds_scores) / len(teds_scores) return avg_teds_score, avg_teds_s_score