import os import time import json import argparse from pathlib import Path import unstructured_client from unstructured_client.models import operations, shared from utils import read_file_paths, validate_json_save_path, load_json_file CATEGORY_MAP = { "NarrativeText": "paragraph", "ListItem": "paragraph", "Title": "heading1", "Address": "paragraph", "Header": "header", "Footer": "footer", "UncategorizedText": "paragraph", "Formula": "equation", "FigureCaption": "caption", "Table": "table", "PageBreak": "paragraph", "Image": "figure", "PageNumber": "paragraph", "CodeSnippet": "paragraph" } class UnstructuredInference: def __init__( self, save_path, input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] ): """Initialize the UnstructuredInference class Args: save_path (str): the json path to save the results input_formats (list, optional): the supported file formats. """ self.formats = input_formats self.api_key = os.getenv("UNSTRUCTURED_API_KEY") or "" self.url = os.getenv("UNSTRUCTURED_URL") or "" if not self.api_key or not self.url: raise ValueError("Please set the environment variables for Unstructured") self.languages = ["eng", "kor"] self.get_coordinates = True self.infer_table_structure = True # create save basepath validate_json_save_path(save_path) self.save_path = save_path self.processed_data = load_json_file(save_path) self.client = unstructured_client.UnstructuredClient( api_key_auth=self.api_key, server_url=self.url, ) def post_process(self, data): processed_dict = {} for input_key in data.keys(): output_data = data[input_key] processed_dict[input_key] = { "elements": [] } id_counter = 0 for elem in output_data: transcription = elem["text"] category = CATEGORY_MAP.get(elem["type"], "paragraph") if elem["metadata"]["coordinates"] is None: continue xy_coord = [{"x": x, "y": y} for x, y in elem["metadata"]["coordinates"]["points"]] if category == "table": transcription = elem["metadata"]["text_as_html"] data_dict = { "coordinates": xy_coord, "category": category, "id": id_counter, "content": { "text": str(transcription) if category != "table" else "", "html": transcription if category == "table" else "", "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) id_counter += 1 for key in self.processed_data: processed_dict[key] = self.processed_data[key] return processed_dict def infer(self, file_path): """Infer the layout of the documents in the given file path Args: file_path (str): the path to the file or directory containing the documents to process """ paths = read_file_paths(file_path, supported_formats=self.formats) error_files = [] result_dict = {} for filepath in paths: print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath)) filename = filepath.name if filename in self.processed_data.keys(): print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") continue with open(filepath, "rb") as f: data = f.read() req = operations.PartitionRequest( partition_parameters=shared.PartitionParameters( files=shared.Files( content=data, file_name=str(filepath), ), # --- Other partition parameters --- strategy=shared.Strategy.HI_RES, pdf_infer_table_structure=self.infer_table_structure, coordinates=self.get_coordinates, languages=self.languages, ), ) try: res = self.client.general.partition(request=req) elements = res.elements except Exception as e: print(e) print("Error processing document..") error_files.append(filepath) continue result_dict[filename] = elements result_dict = self.post_process(result_dict) with open(self.save_path, "w") as f: json.dump(result_dict, f) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument( "--data_path", type=str, default="", required=True, help="Path containing the documents to process" ) args.add_argument( "--save_path", type=str, default="", required=True, help="Path to save the results" ) args.add_argument( "--input_formats", type=list, default=[ ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" ], help="Supported input file formats" ) args = args.parse_args() unstructured_inference = UnstructuredInference( args.save_path, input_formats=args.input_formats ) unstructured_inference.infer(args.data_path)