import os import time import json import markdown import requests import argparse from pathlib import Path from bs4 import BeautifulSoup from utils import read_file_paths, validate_json_save_path, load_json_file CATEGORY_MAP = { "text": "paragraph", "heading": "heading1", "table": "table" } class LlamaParseInference: def __init__( self, save_path, input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] ): """Initialize the LlamaParseInference class Args: save_path (str): the json path to save the results input_formats (list, optional): the supported file formats. """ self.formats = input_formats self.api_key = os.getenv("LLAMAPARSE_API_KEY") or "" self.post_url = os.getenv("LLAMAPARSE_POST_URL") or "" self.get_url = os.getenv("LLAMAPARSE_GET_URL") or "" if not all([self.api_key, self.post_url, self.get_url]): raise ValueError("Please set the environment variables for LlamaParse") self.headers = { "Accept": "application/json", "Authorization": f"Bearer {self.api_key}", } validate_json_save_path(save_path) self.save_path = save_path self.processed_data = load_json_file(save_path) def post_process(self, data): processed_dict = {} for input_key in data.keys(): output_data = data[input_key] processed_dict[input_key] = { "elements": [] } id_counter = 0 for elem in output_data["pages"]: for item in elem["items"]: coord = [[0, 0], [0, 0], [0, 0], [0, 0]] category = item["type"] if category == "table": transcription = markdown.markdown( item["md"], extensions=["markdown.extensions.tables"] ) transcription = transcription.replace("\n", "") else: transcription = item["value"] pts = item["bBox"] if "x" in pts and "y" in pts and \ "w" in pts and "h" in pts: coord = [ [pts["x"], pts["y"]], [pts["x"] + pts["w"], pts["y"]], [pts["x"] + pts["w"], pts["y"] + pts["h"]], [pts["x"], pts["y"] + pts["h"]], ] xy_coord = [{"x": x, "y": y} for x, y in coord] category = CATEGORY_MAP.get(category, "paragraph") data_dict = { "coordinates": xy_coord, "category": category, "id": id_counter, "content": { "text": transcription if category != "table" else "", "html": transcription if category == "table" else "", "markdown": "" } } processed_dict[input_key]["elements"].append(data_dict) id_counter += 1 for key in self.processed_data: processed_dict[key] = self.processed_data[key] return processed_dict def infer(self, file_path): """Infer the layout of the documents in the given file path Args: file_path (str): the path to the file or directory containing the documents to process """ paths = read_file_paths(file_path, supported_formats=self.formats) error_files = [] result_dict = {} for filepath in paths: print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath)) filename = filepath.name if filename in self.processed_data.keys(): print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") continue try: with open(filepath, "rb") as file_data: file_data = { "file": ("dummy.pdf", file_data, "") } data = { "invalidate_cache": True, "premium_mode": True, "disable_ocr": False } response = requests.post( self.post_url, headers=self.headers, files=file_data, data=data ) result_data = response.json() status = result_data["status"] id_ = result_data["id"] while status == "PENDING": get_url = f"{self.get_url}/{id_}" response = requests.get(get_url, headers=self.headers) response_json = response.json() status = response_json["status"] if status == "SUCCESS": get_url = f"{self.get_url}/{id_}/result/json" response = requests.get(get_url, headers=self.headers) break time.sleep(1) result_dict[filename] = response.json() except Exception as e: print(e) print("Error processing document..") error_files.append(filepath) continue result_dict = self.post_process(result_dict) with open(self.save_path, "w") as f: json.dump(result_dict, f) for error_file in error_files: print(f"Error processing file: {error_file}") print("Finished processing all documents") print("Results saved to: {}".format(self.save_path)) print("Number of errors: {}".format(len(error_files))) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument( "--data_path", type=str, default="", required=True, help="Path containing the documents to process" ) args.add_argument( "--save_path", type=str, default="", required=True, help="Path to save the results" ) args.add_argument( "--input_formats", type=list, default=[ ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" ], help="Supported input file formats" ) args = args.parse_args() llamaparse_inference = LlamaParseInference( args.save_path, input_formats=args.input_formats ) llamaparse_inference.infer(args.data_path)