Datasets:

ArXiv:
License:
dp-bench / scripts /infer_upstage.py
shinseung428's picture
Upload 115 files
b837da3 unverified
raw
history blame
4.25 kB
import os
import sys
import json
import requests
import argparse
from pathlib import Path
from utils import read_file_paths, validate_json_save_path, load_json_file
class UpstageInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
output_formats=["text", "html", "markdown"],
model_name="document-parse-240910",
):
"""Initialize the UpstageInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported input file formats.
output_formats (list, optional): the supported output formats.
model_name (str, optional): the model name. Defaults to "document-parse-240910".
"""
self.endpoint = os.getenv("UPSTAGE_ENDPOINT", "")
self.api_key = os.getenv("UPSTAGE_API_KEY", "")
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
self.input_formats = input_formats
self.output_formats = output_formats
self.headers = {
"Authorization": f"Bearer {self.api_key}",
}
self.data = {
"ocr": "force",
"model": model_name,
"output_formats": f"{self.output_formats}"
}
def infer(self, file_path) -> None:
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, self.input_formats)
error_files = []
result_dict = {}
for idx, filepath in enumerate(paths):
print("({}/{}) {}".format(idx+1, len(paths), filepath))
filename = Path(filepath).name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
files = {
"document": open(filepath, "rb"),
}
try:
# The API does not support files exceeding 50MB
# or containing more than 100 pages.
response = requests.post(
self.endpoint,
headers=self.headers,
files=files,
data=self.data
)
json_result = response.json()
result_dict[filename] = json_result
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
for key in self.processed_data:
result_dict[key] = self.processed_data[key]
with open(self.save_path, "w", encoding="utf-8") as f:
json.dump(result_dict, f, ensure_ascii=False, indent=4)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=str, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args.add_argument(
"--output_formats",
type=str, default=["text", "html", "markdown"],
help="Output formats supported by the API"
)
args = args.parse_args()
upstage_inference = UpstageInference(
args.save_path,
input_formats=args.input_formats,
output_formats=args.output_formats
)
upstage_inference.infer(args.data_path)