|
import os |
|
import time |
|
import json |
|
import argparse |
|
from pathlib import Path |
|
|
|
import unstructured_client |
|
from unstructured_client.models import operations, shared |
|
|
|
from utils import read_file_paths, validate_json_save_path, load_json_file |
|
|
|
|
|
CATEGORY_MAP = { |
|
"NarrativeText": "paragraph", |
|
"ListItem": "paragraph", |
|
"Title": "heading1", |
|
"Address": "paragraph", |
|
"Header": "header", |
|
"Footer": "footer", |
|
"UncategorizedText": "paragraph", |
|
"Formula": "equation", |
|
"FigureCaption": "caption", |
|
"Table": "table", |
|
"PageBreak": "paragraph", |
|
"Image": "figure", |
|
"PageNumber": "paragraph", |
|
"CodeSnippet": "paragraph" |
|
} |
|
|
|
|
|
class UnstructuredInference: |
|
def __init__( |
|
self, |
|
save_path, |
|
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] |
|
): |
|
"""Initialize the UnstructuredInference class |
|
Args: |
|
save_path (str): the json path to save the results |
|
input_formats (list, optional): the supported file formats. |
|
""" |
|
self.formats = input_formats |
|
|
|
self.api_key = os.getenv("UNSTRUCTURED_API_KEY") or "" |
|
self.url = os.getenv("UNSTRUCTURED_URL") or "" |
|
|
|
if not self.api_key or not self.url: |
|
raise ValueError("Please set the environment variables for Unstructured") |
|
|
|
self.languages = ["eng", "kor"] |
|
self.get_coordinates = True |
|
self.infer_table_structure = True |
|
|
|
|
|
validate_json_save_path(save_path) |
|
self.save_path = save_path |
|
self.processed_data = load_json_file(save_path) |
|
|
|
self.client = unstructured_client.UnstructuredClient( |
|
api_key_auth=self.api_key, |
|
server_url=self.url, |
|
) |
|
|
|
def post_process(self, data): |
|
processed_dict = {} |
|
for input_key in data.keys(): |
|
output_data = data[input_key] |
|
|
|
processed_dict[input_key] = { |
|
"elements": [] |
|
} |
|
|
|
id_counter = 0 |
|
for elem in output_data: |
|
transcription = elem["text"] |
|
category = CATEGORY_MAP.get(elem["type"], "paragraph") |
|
if elem["metadata"]["coordinates"] is None: |
|
continue |
|
|
|
xy_coord = [{"x": x, "y": y} for x, y in elem["metadata"]["coordinates"]["points"]] |
|
|
|
if category == "table": |
|
transcription = elem["metadata"]["text_as_html"] |
|
|
|
data_dict = { |
|
"coordinates": xy_coord, |
|
"category": category, |
|
"id": id_counter, |
|
"content": { |
|
"text": str(transcription) if category != "table" else "", |
|
"html": transcription if category == "table" else "", |
|
"markdown": "" |
|
} |
|
} |
|
processed_dict[input_key]["elements"].append(data_dict) |
|
|
|
id_counter += 1 |
|
|
|
for key in self.processed_data: |
|
processed_dict[key] = self.processed_data[key] |
|
|
|
return processed_dict |
|
|
|
def infer(self, file_path): |
|
"""Infer the layout of the documents in the given file path |
|
Args: |
|
file_path (str): the path to the file or directory containing the documents to process |
|
""" |
|
paths = read_file_paths(file_path, supported_formats=self.formats) |
|
|
|
error_files = [] |
|
|
|
result_dict = {} |
|
for filepath in paths: |
|
print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath)) |
|
filename = filepath.name |
|
if filename in self.processed_data.keys(): |
|
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") |
|
continue |
|
|
|
with open(filepath, "rb") as f: |
|
data = f.read() |
|
|
|
req = operations.PartitionRequest( |
|
partition_parameters=shared.PartitionParameters( |
|
files=shared.Files( |
|
content=data, |
|
file_name=str(filepath), |
|
), |
|
|
|
strategy=shared.Strategy.HI_RES, |
|
pdf_infer_table_structure=self.infer_table_structure, |
|
coordinates=self.get_coordinates, |
|
languages=self.languages, |
|
), |
|
) |
|
|
|
try: |
|
res = self.client.general.partition(request=req) |
|
elements = res.elements |
|
except Exception as e: |
|
print(e) |
|
print("Error processing document..") |
|
error_files.append(filepath) |
|
continue |
|
|
|
result_dict[filename] = elements |
|
|
|
result_dict = self.post_process(result_dict) |
|
|
|
with open(self.save_path, "w") as f: |
|
json.dump(result_dict, f) |
|
|
|
for error_file in error_files: |
|
print(f"Error processing file: {error_file}") |
|
|
|
print("Finished processing all documents") |
|
print("Results saved to: {}".format(self.save_path)) |
|
print("Number of errors: {}".format(len(error_files))) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = argparse.ArgumentParser() |
|
args.add_argument( |
|
"--data_path", |
|
type=str, default="", required=True, |
|
help="Path containing the documents to process" |
|
) |
|
args.add_argument( |
|
"--save_path", |
|
type=str, default="", required=True, |
|
help="Path to save the results" |
|
) |
|
args.add_argument( |
|
"--input_formats", |
|
type=list, default=[ |
|
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" |
|
], |
|
help="Supported input file formats" |
|
) |
|
args = args.parse_args() |
|
|
|
unstructured_inference = UnstructuredInference( |
|
args.save_path, |
|
input_formats=args.input_formats |
|
) |
|
unstructured_inference.infer(args.data_path) |
|
|
|
|