Datasets:

ArXiv:
License:
dp-bench / scripts /infer_google.py
shinseung428's picture
update scripts and script README
cb40a1c
raw
history blame
8.67 kB
import os
import json
import google
import argparse
from glob import glob
from typing import Optional, Sequence
from google.api_core.client_options import ClientOptions
from google.cloud import documentai
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"paragraph": "paragraph",
"footer": "footer",
"header": "header",
"heading-1": "heading1",
"heading-2": "heading1",
"heading-3": "heading1",
"table": "table",
"title": "heading1"
}
class GoogleInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the GoogleInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
self.project_id = os.getenv("GOOGLE_PROJECT_ID") or ""
self.processor_id = os.getenv("GOOGLE_PROCESSOR_ID") or ""
self.location = os.getenv("GOOGLE_LOCATION") or ""
self.endpoint = os.getenv("GOOGLE_ENDPOINT") or ""
if not all([self.project_id, self.processor_id, self.location, self.endpoint]):
raise ValueError("Please set the environment variables for Google Cloud")
self.processor_version = "rc"
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
self.formats = input_formats
@staticmethod
def generate_html_table(table_data):
html = "<table border='1'>\n"
# Process body rows
for row in table_data["bodyRows"]:
html += " <tr>\n"
for cell in row["cells"]:
text = cell["blocks"][0]["textBlock"]["text"] if cell["blocks"] else ""
row_span = f" rowspan='{cell['rowSpan']}'" if cell["rowSpan"] > 1 else ""
col_span = f" colspan='{cell['colSpan']}'" if cell["colSpan"] > 1 else ""
html += f" <td{row_span}{col_span}>{text}</td>\n"
html += " </tr>\n"
html += "</table>"
return html
@staticmethod
def iterate_blocks(data):
block_sequence = []
def recurse_blocks(blocks):
for block in blocks:
block_id = block.get("blockId", "")
block_type = block.get("textBlock", {}).get("type", "")
block_text = block.get("textBlock", {}).get("text", "")
if block_type:
# Append block information as a tuple to the sequence list
block_sequence.append((block_id, block_type, block_text))
block_id = block.get("blockId", "")
block_table = block.get("tableBlock", {})
if block_table:
block_table_html = GoogleInference.generate_html_table(block_table)
block_sequence.append((block_id, "table", block_table_html))
# If the block contains sub-blocks, recurse through them
if block.get("textBlock", {}).get("blocks", []):
recurse_blocks(block["textBlock"]["blocks"])
if "documentLayout" in data:
recurse_blocks(data["documentLayout"].get("blocks", []))
return block_sequence
def post_process(self, data):
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
blocks = self.iterate_blocks(output_data)
id_counter = 0
for _, category, transcription in blocks:
category = CATEGORY_MAP.get(category, "paragraph")
data_dict = {
"coordinates": [[0, 0], [0, 0], [0, 0], [0, 0]],
"category": category,
"id": id_counter,
"content": {
"text": transcription if category != "table" else "",
"html": transcription if category == "table" else "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def process_document_layout_sample(self, file_path, mime_type, chunk_size=1000) -> None:
process_options = documentai.ProcessOptions(
layout_config=documentai.ProcessOptions.LayoutConfig(
chunking_config=documentai.ProcessOptions.LayoutConfig.ChunkingConfig(
chunk_size=chunk_size,
include_ancestor_headings=True,
)
)
)
document = self.process_document(
file_path,
mime_type,
process_options=process_options,
)
document_dict = json.loads(google.cloud.documentai_v1.Document.to_json(document))
return document_dict
def process_document(
self, file_path,
mime_type: str,
process_options: Optional[documentai.ProcessOptions] = None,
) -> documentai.Document:
client = documentai.DocumentProcessorServiceClient(
client_options=ClientOptions(
api_endpoint=f"{self.endpoint}"
)
)
with open(file_path, "rb") as image:
image_content = image.read()
name = client.processor_version_path(
self.project_id,
self.location,
self.processor_id,
self.processor_version
)
request = documentai.ProcessRequest(
name=name,
raw_document=documentai.RawDocument(
content=image_content, mime_type=mime_type
),
process_options=process_options,
)
result = client.process_document(request=request)
return result.document
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for idx, filepath in enumerate(paths):
print("({}/{}) {}".format(idx+1, len(paths), filepath))
if filepath.suffix == ".pdf":
mime_type = "application/pdf"
elif filepath.suffix == ".jpg" or filepath.suffix == ".jpeg":
mime_type = "image/jpeg"
elif filepath.suffix == ".png":
mime_type = "image/png"
else:
raise NotImplementedError
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
try:
document_dict = self.process_document_layout_sample(filepath, mime_type)
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict[filename] = document_dict
result_dict = self.post_process(result_dict)
with open(self.save_path, "w") as f:
json.dump(result_dict, f)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=list, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
google_inference = GoogleInference(
args.save_path,
input_formats=args.input_formats
)
google_inference.infer(args.data_path)