|
from rapidfuzz import fuzz |
|
|
|
def calc_nid( |
|
gt_text : list, |
|
pred_text : list, |
|
) -> float: |
|
"""Calculate the Normalized InDel score between the gt and pred text. |
|
|
|
Args: |
|
gt_text (str): The string of gt text to compare. |
|
pred_text (str): The string of pred text to compare. |
|
|
|
Returns: |
|
float: The nid score between gt and pred text. |
|
""" |
|
|
|
|
|
if len(gt_text) == 0 and len(pred_text) == 0: |
|
score = 1 |
|
|
|
elif len(gt_text) > 0 and len(pred_text) == 0: |
|
score = 0 |
|
else: |
|
score = fuzz.ratio(gt_text, pred_text) |
|
|
|
return score |
|
|
|
|
|
def extract_text( |
|
data : dict, |
|
ignore_classes : list = [], |
|
strings_to_remove : list = ["\n"], |
|
) -> str: |
|
"""Extract text from the dictionary data. |
|
|
|
Args: |
|
data (dict): The data to extract text from. |
|
ignore_classes (list): A list of classes to ignore during extraction. |
|
strings_to_remove (list): A list of strings to remove from the extracted text. |
|
|
|
Returns: |
|
str: The concatenated text extracted from the data. |
|
""" |
|
|
|
ignore_classes = [x.lower() for x in ignore_classes] |
|
|
|
concatenated_text = "" |
|
|
|
for elem in data["elements"]: |
|
if elem["category"].lower() in ignore_classes: |
|
continue |
|
|
|
concatenated_text += elem["content"]["text"] + ' ' |
|
|
|
|
|
for string in strings_to_remove: |
|
concatenated_text = concatenated_text.replace(string, '') |
|
|
|
return concatenated_text |
|
|
|
|
|
def evaluate_layout( |
|
gt : dict, |
|
pred : dict, |
|
ignore_classes : list = [], |
|
) -> float: |
|
"""Evaluate the layout of the gt against the pred. |
|
|
|
Args: |
|
gt (dict): The gt layout to evaluate. |
|
pred (dict): The pred layout to evaluate against. |
|
ignore_classes (list): A list of classes to ignore during evaluation. |
|
|
|
Returns: |
|
float: The layout evaluation score. |
|
""" |
|
scores = [] |
|
for image_key in gt.keys(): |
|
gt_data = gt.get(image_key) |
|
pred_data = pred.get(image_key) |
|
|
|
gt_text = extract_text(gt_data, ignore_classes) |
|
pred_text = extract_text(pred_data, ignore_classes) |
|
|
|
score = calc_nid(gt_text, pred_text) |
|
|
|
scores.append(score) |
|
|
|
if len(scores) > 0: |
|
avg_score = sum(scores) / (len(scores) * 100) |
|
else: |
|
avg_score = 0 |
|
|
|
return avg_score |
|
|