|
import os |
|
import cv2 |
|
import json |
|
import time |
|
import boto3 |
|
import argparse |
|
|
|
from utils import read_file_paths, validate_json_save_path, load_json_file |
|
|
|
CATEGORY_MAP = { |
|
"LAYOUT_TEXT": "paragraph", |
|
"LAYOUT_LIST": "list", |
|
"LAYOUT_HEADER": "header", |
|
"LAYOUT_FOOTER": "footer", |
|
"LAYOUT_PAGE_NUMBER": "paragraph", |
|
"LAYOUT_FIGURE": "figure", |
|
"LAYOUT_TABLE": "table", |
|
"LAYOUT_TITLE": "heading1", |
|
"LAYOUT_SECTION_HEADER": "heading1", |
|
"TABLE": "table" |
|
} |
|
|
|
|
|
class AWSInference: |
|
def __init__( |
|
self, |
|
save_path, |
|
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] |
|
): |
|
"""Initialize the AWSInference class |
|
Args: |
|
save_path (str): the json path to save the results |
|
input_formats (list, optional): the supported file formats. |
|
""" |
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") or "" |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") or "" |
|
AWS_REGION = os.getenv("AWS_REGION") or "" |
|
AWS_S3_BUCKET_NAME = os.getenv("AWS_S3_BUCKET_NAME") or "" |
|
self.client = boto3.client( |
|
"textract", |
|
region_name=AWS_REGION, |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY |
|
) |
|
|
|
self.s3 = boto3.resource("s3") |
|
self.s3_bucket_name = AWS_S3_BUCKET_NAME |
|
|
|
validate_json_save_path(save_path) |
|
self.save_path = save_path |
|
self.processed_data = load_json_file(save_path) |
|
|
|
self.formats = input_formats |
|
|
|
def post_process(self, data): |
|
def get_text(result, blocks_map): |
|
text = "" |
|
if "Relationships" in result: |
|
for relationship in result["Relationships"]: |
|
if relationship["Type"] == "CHILD": |
|
for child_id in relationship["Ids"]: |
|
word = blocks_map[child_id] |
|
if word["BlockType"] == "WORD": |
|
text += " " + word["Text"] |
|
return text[1:] |
|
|
|
processed_dict = {} |
|
for input_key in data.keys(): |
|
output_data = data[input_key] |
|
|
|
processed_dict[input_key] = { |
|
"elements": [] |
|
} |
|
|
|
all_elems = {} |
|
for page_data in output_data: |
|
for elem in page_data["Blocks"]: |
|
_id = elem["Id"] |
|
all_elems[_id] = elem |
|
|
|
for page_data in output_data: |
|
for idx, elem in enumerate(page_data["Blocks"]): |
|
if elem["BlockType"] == "LAYOUT_LIST": |
|
continue |
|
|
|
if "LAYOUT" in elem["BlockType"] and elem["BlockType"] != "LAYOUT_TABLE": |
|
|
|
bbox = elem["Geometry"]["BoundingBox"] |
|
|
|
x = bbox["Left"] |
|
y = bbox["Top"] |
|
w = bbox["Width"] |
|
h = bbox["Height"] |
|
|
|
coord = [ |
|
[x, y], |
|
[x + w, y], |
|
[x + w, y + h], |
|
[x, y + h] |
|
] |
|
xy_coord = [{"x": x, "y": y} for x, y in coord] |
|
|
|
category = CATEGORY_MAP.get(elem["BlockType"], "paragraph") |
|
|
|
transcription = "" |
|
|
|
if elem["BlockType"] != "LAYOUT_FIGURE": |
|
for item in all_elems[elem["Id"]]["Relationships"]: |
|
for id_ in item["Ids"]: |
|
if all_elems[id_]["BlockType"] == "LINE": |
|
word = all_elems[id_]["Text"] |
|
transcription += word + "\n" |
|
|
|
data_dict = { |
|
"coordinates": xy_coord, |
|
"category": category, |
|
"id": idx, |
|
"content": { |
|
"text": transcription, |
|
"html": "", |
|
"markdown": "" |
|
} |
|
} |
|
processed_dict[input_key]["elements"].append(data_dict) |
|
|
|
elif elem["BlockType"] == "TABLE": |
|
|
|
bbox = elem["Geometry"]["BoundingBox"] |
|
|
|
x = bbox["Left"] |
|
y = bbox["Top"] |
|
w = bbox["Width"] |
|
h = bbox["Height"] |
|
|
|
coord = [ |
|
[x, y], |
|
[x + w, y], |
|
[x + w, y + h], |
|
[x, y + h] |
|
] |
|
xy_coord = [{"x": x, "y": y} for x, y in coord] |
|
|
|
category = CATEGORY_MAP.get(elem["BlockType"], "paragraph") |
|
|
|
table_cells = {} |
|
for relationship in elem["Relationships"]: |
|
if relationship["Type"] == "CHILD": |
|
for cell_id in relationship["Ids"]: |
|
cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None) |
|
if cell_block is not None and cell_block["BlockType"] == "CELL": |
|
row_index = cell_block["RowIndex"] - 1 |
|
column_index = cell_block["ColumnIndex"] - 1 |
|
row_span = cell_block["RowSpan"] |
|
column_span = cell_block["ColumnSpan"] |
|
table_cells[(row_index, column_index)] = { |
|
"block": cell_block, |
|
"span": (row_span, column_span), |
|
"text": get_text(cell_block, all_elems), |
|
} |
|
max_row_index = max(cell[0] for cell in table_cells.keys()) |
|
max_column_index = max(cell[1] for cell in table_cells.keys()) |
|
for relationship in elem["Relationships"]: |
|
if relationship["Type"] == "MERGED_CELL": |
|
for cell_id in relationship["Ids"]: |
|
cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None) |
|
if cell_block is not None and cell_block["BlockType"] == "MERGED_CELL": |
|
row_index = cell_block["RowIndex"] - 1 |
|
column_index = cell_block["ColumnIndex"] - 1 |
|
row_span = cell_block["RowSpan"] |
|
column_span = cell_block["ColumnSpan"] |
|
for i in range(row_span): |
|
for j in range(column_span): |
|
del table_cells[(row_index + i, column_index + j)] |
|
text = "" |
|
for child_ids in cell_block["Relationships"][0]["Ids"]: |
|
child_cell_block = next((block for block in page_data["Blocks"] if block["Id"] == child_ids), None) |
|
text += " " + get_text(child_cell_block, all_elems) |
|
table_cells[(row_index, column_index)] = { |
|
"block": cell_block, |
|
"span": (row_span, column_span), |
|
"text": text[1:], |
|
} |
|
html_table = "<table>" |
|
|
|
for row_index in range(max_row_index + 1): |
|
html_table += "<tr>" |
|
for column_index in range(max_column_index + 1): |
|
cell_data = table_cells.get((row_index, column_index)) |
|
if cell_data: |
|
cell_block = cell_data["block"] |
|
row_span, column_span = cell_data["span"] |
|
|
|
cell_text = cell_data["text"] |
|
html_table += f"<td rowspan='{row_span}' colspan='{column_span}''>{cell_text}</td>" |
|
html_table += "</tr>" |
|
html_table += "</table>" |
|
|
|
data_dict = { |
|
"coordinates": xy_coord, |
|
"category": category, |
|
"id": idx, |
|
"content": { |
|
"text": "", |
|
"html": html_table, |
|
"markdown": "" |
|
} |
|
} |
|
processed_dict[input_key]["elements"].append(data_dict) |
|
|
|
for key in self.processed_data: |
|
processed_dict[key] = self.processed_data[key] |
|
|
|
return processed_dict |
|
|
|
|
|
def start_job(self, object_name): |
|
filename_with_ext = os.path.basename(object_name) |
|
|
|
print(f"uploading {filename_with_ext} to s3") |
|
self.s3.Bucket(self.s3_bucket_name).upload_file(object_name, filename_with_ext) |
|
|
|
response = None |
|
response = self.client.start_document_analysis( |
|
DocumentLocation={ |
|
"S3Object": { |
|
"Bucket": self.s3_bucket_name, |
|
"Name": filename_with_ext |
|
} |
|
}, |
|
FeatureTypes = ["LAYOUT", "TABLES"] |
|
) |
|
|
|
return response["JobId"] |
|
|
|
def is_job_complete(self, job_id): |
|
time.sleep(1) |
|
response = self.client.get_document_analysis(JobId=job_id) |
|
status = response["JobStatus"] |
|
print("Job status: {}".format(status)) |
|
|
|
while(status == "IN_PROGRESS"): |
|
time.sleep(1) |
|
response = self.client.get_document_analysis(JobId=job_id) |
|
status = response["JobStatus"] |
|
print("Job status: {}".format(status)) |
|
|
|
return status |
|
|
|
def get_job_results(self, job_id): |
|
pages = [] |
|
time.sleep(1) |
|
response = self.client.get_document_analysis(JobId=job_id) |
|
pages.append(response) |
|
print("Resultset page received: {}".format(len(pages))) |
|
next_token = None |
|
if "NextToken" in response: |
|
next_token = response["NextToken"] |
|
|
|
while next_token: |
|
time.sleep(1) |
|
response = self.client.\ |
|
get_document_analysis(JobId=job_id, NextToken=next_token) |
|
pages.append(response) |
|
print("Resultset page received: {}".format(len(pages))) |
|
next_token = None |
|
if "NextToken" in response: |
|
next_token = response["NextToken"] |
|
|
|
return pages |
|
|
|
def infer(self, file_path): |
|
"""Infer the layout of the documents in the given file path |
|
Args: |
|
file_path (str): the path to the file or directory containing the documents to process |
|
""" |
|
paths = read_file_paths(file_path, supported_formats=self.formats) |
|
|
|
error_files = [] |
|
|
|
result_dict = {} |
|
for idx, filepath in enumerate(paths): |
|
print("({}/{}) {}".format(idx+1, len(paths), filepath)) |
|
|
|
filename = filepath.name |
|
if filename in self.processed_data.keys(): |
|
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") |
|
continue |
|
|
|
try: |
|
if os.path.splitext(filepath)[-1] == ".pdf": |
|
job_id = self.start_job(filepath) |
|
print("Started job with id: {}".format(job_id)) |
|
if self.is_job_complete(job_id): |
|
result = self.get_job_results(job_id) |
|
else: |
|
with open(filepath, "rb") as file: |
|
img_test = file.read() |
|
bytes_test = bytearray(img_test) |
|
|
|
result = self.client.analyze_document( |
|
Document={"Bytes": bytes_test}, |
|
FeatureTypes = ["LAYOUT", "TABLES"] |
|
) |
|
except Exception as e: |
|
print(e) |
|
print("Error processing document..") |
|
error_files.append(filepath) |
|
continue |
|
|
|
result_dict[filename] = result |
|
|
|
result_dict = self.post_process(result_dict) |
|
|
|
with open(self.save_path, "w", encoding="utf-8") as f: |
|
json.dump(result_dict, f, ensure_ascii=False, indent=4) |
|
|
|
for error_file in error_files: |
|
print(f"Error processing file: {error_file}") |
|
|
|
print("Finished processing all documents") |
|
print("Results saved to: {}".format(self.save_path)) |
|
print("Number of errors: {}".format(len(error_files))) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = argparse.ArgumentParser() |
|
args.add_argument( |
|
"--data_path", |
|
type=str, default="", required=True, |
|
help="Path containing the documents to process" |
|
) |
|
args.add_argument( |
|
"--save_path", |
|
type=str, default="", required=True, |
|
help="Path to save the results" |
|
) |
|
args.add_argument( |
|
"--input_formats", |
|
type=str, default=[ |
|
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" |
|
], |
|
help="Supported input file formats" |
|
) |
|
args = args.parse_args() |
|
|
|
aws_inference = AWSInference( |
|
args.save_path, |
|
input_formats=args.input_formats |
|
) |
|
aws_inference.infer(args.data_path) |
|
|