Datasets:

ArXiv:
License:
dp-bench / scripts /infer_llamaparse.py
shinseung428's picture
bugfix and add remaining dataset
6c2a241
raw
history blame
6.69 kB
import os
import time
import json
import markdown
import requests
import argparse
from pathlib import Path
from bs4 import BeautifulSoup
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"text": "paragraph",
"heading": "heading1",
"table": "table"
}
class LlamaParseInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the LlamaParseInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
self.formats = input_formats
self.api_key = os.getenv("LLAMAPARSE_API_KEY") or ""
self.post_url = os.getenv("LLAMAPARSE_POST_URL") or ""
self.get_url = os.getenv("LLAMAPARSE_GET_URL") or ""
self.headers = {
"Accept": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
def post_process(self, data):
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
id_counter = 0
for elem in output_data["pages"]:
for item in elem["items"]:
coord = [[0, 0], [0, 0], [0, 0], [0, 0]]
category = item["type"]
if category == "table":
transcription = markdown.markdown(
item["md"],
extensions=["markdown.extensions.tables"]
)
transcription = transcription.replace("\n", "")
else:
transcription = item["value"]
pts = item["bBox"]
if "x" in pts and "y" in pts and \
"w" in pts and "h" in pts:
coord = [
[pts["x"], pts["y"]],
[pts["x"] + pts["w"], pts["y"]],
[pts["x"] + pts["w"], pts["y"] + pts["h"]],
[pts["x"], pts["y"] + pts["h"]],
]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = CATEGORY_MAP.get(category, "paragraph")
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": id_counter,
"content": {
"text": transcription if category != "table" else "",
"html": transcription if category == "table" else "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for filepath in paths:
print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath))
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
try:
with open(filepath, "rb") as file_data:
file_data = {
"file": ("dummy.pdf", file_data, "")
}
data = {
"invalidate_cache": True,
"premium_mode": True,
"disable_ocr": False
}
response = requests.post(
self.post_url, headers=self.headers, files=file_data, data=data
)
result_data = response.json()
status = result_data["status"]
id_ = result_data["id"]
while status == "PENDING":
get_url = f"{self.get_url}/{id_}"
response = requests.get(get_url, headers=self.headers)
response_json = response.json()
status = response_json["status"]
if status == "SUCCESS":
get_url = f"{self.get_url}/{id_}/result/json"
response = requests.get(get_url, headers=self.headers)
break
time.sleep(1)
result_dict[filename] = response.json()
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict = self.post_process(result_dict)
with open(self.save_path, "w") as f:
json.dump(result_dict, f)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=list, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
llamaparse_inference = LlamaParseInference(
args.save_path,
input_formats=args.input_formats
)
llamaparse_inference.infer(args.data_path)