|
import json |
|
from pathlib import Path |
|
from typing import List |
|
|
|
|
|
def read_file(path: str, supported_formats: str = ".json") -> dict: |
|
"""Read a file and return its content as a string |
|
|
|
Args: |
|
path (str): the path to the file to read |
|
supported_formats (str, optional): the supported file formats. Defaults to ".json". |
|
|
|
Returns: |
|
dict: the json content of the file |
|
|
|
Raises: |
|
FileNotFoundError: if the file does not exist |
|
ValueError: if the file format is not supported |
|
""" |
|
|
|
path = Path(path) |
|
|
|
|
|
if not path.exists() or not path.is_file(): |
|
raise FileNotFoundError(f"File {path} not found") |
|
|
|
|
|
if path.suffix not in supported_formats: |
|
raise ValueError(f"File format {path.suffix} not supported") |
|
|
|
with path.open("r") as file: |
|
file_content = json.load(file) |
|
|
|
return file_content |
|
|
|
|
|
def create_directory(path: str) -> None: |
|
"""Create a directory if it does not exist |
|
|
|
Args: |
|
path (str): the path to the directory to create |
|
""" |
|
|
|
path = Path(path) |
|
|
|
if not path.exists(): |
|
path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
def read_file_paths(path: str, supported_formats: List[str] = [".jpg"]) -> List[str]: |
|
"""Read files in a directory and return their content as a list of strings |
|
|
|
Args: |
|
path (str): the path to the directory containing the file paths to read |
|
supported_formats (List[str], optional): the supported file formats. Defaults to [".jpg"]. |
|
|
|
Returns: |
|
list: list of valid file paths |
|
|
|
Raises: |
|
FileNotFoundError: if the directory does not exist |
|
""" |
|
|
|
path = Path(path) |
|
|
|
|
|
if not path.exists() or not path.is_dir(): |
|
raise FileNotFoundError(f"Directory {path} not found") |
|
|
|
|
|
file_paths = [file for file in path.iterdir() if file.is_file()] |
|
|
|
|
|
if supported_formats: |
|
file_paths = [file for file in file_paths if file.suffix in supported_formats] |
|
else: |
|
file_paths = [] |
|
|
|
return file_paths |
|
|
|
|
|
def check_dataset_format(data: dict, image_key: str) -> None: |
|
"""Check the format of the dataset |
|
|
|
Args: |
|
data (dict): the gt/prediction dataset to check |
|
image_key (str): the image name acting as the key in the dataset |
|
|
|
Raises: |
|
ValueError: if a key is missing in the dataset |
|
""" |
|
if data[image_key].get("elements") is None: |
|
raise ValueError( |
|
f"{image_key} does not have 'elements' key in the json file. " |
|
"Check if you are passing the correct data." |
|
) |
|
|
|
elements = data[image_key]["elements"] |
|
for elem in elements: |
|
if elem.get("category") is None: |
|
raise ValueError( |
|
f"{image_key} does not have 'category' key in the ground truth file. " |
|
"Check if you are passing the correct data." |
|
) |
|
|
|
if elem.get("content") is None: |
|
raise ValueError( |
|
f"{image_key} does not have 'content' key in the ground truth file. " |
|
"Check if you are passing the correct data." |
|
) |
|
else: |
|
content = elem["content"] |
|
if content.get("text") is None: |
|
raise ValueError( |
|
f"{image_key} does not have 'text' key in the ground truth file. " |
|
"Check if you are passing the correct data." |
|
) |
|
|
|
|
|
def check_data_validity(gt_data: dict, pred_data: dict) -> None: |
|
"""Check the validity of the ground truth and prediction data |
|
|
|
Args: |
|
gt_data (dict): the ground truth data |
|
pred_data (dict): the prediction data |
|
|
|
Raises: |
|
ValueError: if the ground truth or prediction data is invalid |
|
""" |
|
|
|
if not gt_data: |
|
raise ValueError("Ground truth data is empty") |
|
|
|
if not pred_data: |
|
raise ValueError("Prediction data is empty") |
|
|
|
for image_key in gt_data.keys(): |
|
pred_elem = pred_data.get(image_key) |
|
if pred_data is None: |
|
raise ValueError( |
|
f"{image_key} not found in prediction. " |
|
"Check if you are passing the correct data." |
|
) |
|
|
|
for image_key in gt_data.keys(): |
|
check_dataset_format(gt_data, image_key) |
|
|
|
for image_key in pred_data.keys(): |
|
check_dataset_format(pred_data, image_key) |
|
|