|
import os |
|
import json |
|
import google |
|
import argparse |
|
|
|
from glob import glob |
|
from typing import Optional, Sequence |
|
|
|
from google.api_core.client_options import ClientOptions |
|
from google.cloud import documentai |
|
|
|
from utils import read_file_paths, validate_json_save_path, load_json_file |
|
|
|
CATEGORY_MAP = { |
|
"paragraph": "paragraph", |
|
"footer": "footer", |
|
"header": "header", |
|
"heading-1": "heading1", |
|
"heading-2": "heading1", |
|
"heading-3": "heading1", |
|
"table": "table", |
|
"title": "heading1" |
|
} |
|
|
|
|
|
class GoogleInference: |
|
def __init__( |
|
self, |
|
save_path, |
|
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] |
|
): |
|
"""Initialize the GoogleInference class |
|
Args: |
|
save_path (str): the json path to save the results |
|
input_formats (list, optional): the supported file formats. |
|
""" |
|
self.project_id = os.getenv("GOOGLE_PROJECT_ID") or "" |
|
|
|
self.processor_id = os.getenv("GOOGLE_PROCESSOR_ID") or "" |
|
|
|
self.location = os.getenv("GOOGLE_LOCATION") or "" |
|
|
|
self.endpoint = os.getenv("GOOGLE_ENDPOINT") or "" |
|
|
|
self.processor_version = "rc" |
|
|
|
validate_json_save_path(save_path) |
|
self.save_path = save_path |
|
self.processed_data = load_json_file(save_path) |
|
|
|
self.formats = input_formats |
|
|
|
@staticmethod |
|
def generate_html_table(table_data): |
|
html = "<table border='1'>\n" |
|
|
|
|
|
for row in table_data["bodyRows"]: |
|
html += " <tr>\n" |
|
for cell in row["cells"]: |
|
text = cell["blocks"][0]["textBlock"]["text"] if cell["blocks"] else "" |
|
row_span = f" rowspan='{cell['rowSpan']}'" if cell["rowSpan"] > 1 else "" |
|
col_span = f" colspan='{cell['colSpan']}'" if cell["colSpan"] > 1 else "" |
|
html += f" <td{row_span}{col_span}>{text}</td>\n" |
|
html += " </tr>\n" |
|
|
|
html += "</table>" |
|
return html |
|
|
|
@staticmethod |
|
def iterate_blocks(data): |
|
block_sequence = [] |
|
|
|
def recurse_blocks(blocks): |
|
for block in blocks: |
|
block_id = block.get("blockId", "") |
|
block_type = block.get("textBlock", {}).get("type", "") |
|
block_text = block.get("textBlock", {}).get("text", "") |
|
|
|
if block_type: |
|
|
|
block_sequence.append((block_id, block_type, block_text)) |
|
|
|
block_id = block.get("blockId", "") |
|
block_table = block.get("tableBlock", {}) |
|
|
|
if block_table: |
|
block_table_html = GoogleInference.generate_html_table(block_table) |
|
block_sequence.append((block_id, "table", block_table_html)) |
|
|
|
|
|
if block.get("textBlock", {}).get("blocks", []): |
|
recurse_blocks(block["textBlock"]["blocks"]) |
|
|
|
if "documentLayout" in data: |
|
recurse_blocks(data["documentLayout"].get("blocks", [])) |
|
|
|
return block_sequence |
|
|
|
def post_process(self, data): |
|
|
|
processed_dict = {} |
|
for input_key in data.keys(): |
|
output_data = data[input_key] |
|
|
|
processed_dict[input_key] = { |
|
"elements": [] |
|
} |
|
|
|
blocks = self.iterate_blocks(output_data) |
|
|
|
id_counter = 0 |
|
for _, category, transcription in blocks: |
|
category = CATEGORY_MAP.get(category, "paragraph") |
|
|
|
data_dict = { |
|
"coordinates": [[0, 0], [0, 0], [0, 0], [0, 0]], |
|
"category": category, |
|
"id": id_counter, |
|
"content": { |
|
"text": transcription if category != "table" else "", |
|
"html": transcription if category == "table" else "", |
|
"markdown": "" |
|
} |
|
} |
|
processed_dict[input_key]["elements"].append(data_dict) |
|
|
|
id_counter += 1 |
|
|
|
for key in self.processed_data: |
|
processed_dict[key] = self.processed_data[key] |
|
|
|
return processed_dict |
|
|
|
def process_document_layout_sample(self, file_path, mime_type, chunk_size=1000) -> None: |
|
process_options = documentai.ProcessOptions( |
|
layout_config=documentai.ProcessOptions.LayoutConfig( |
|
chunking_config=documentai.ProcessOptions.LayoutConfig.ChunkingConfig( |
|
chunk_size=chunk_size, |
|
include_ancestor_headings=True, |
|
) |
|
) |
|
) |
|
document = self.process_document( |
|
file_path, |
|
mime_type, |
|
process_options=process_options, |
|
) |
|
|
|
document_dict = json.loads(google.cloud.documentai_v1.Document.to_json(document)) |
|
|
|
return document_dict |
|
|
|
def process_document( |
|
self, file_path, |
|
mime_type: str, |
|
process_options: Optional[documentai.ProcessOptions] = None, |
|
) -> documentai.Document: |
|
client = documentai.DocumentProcessorServiceClient( |
|
client_options=ClientOptions( |
|
api_endpoint=f"{self.endpoint}" |
|
) |
|
) |
|
|
|
with open(file_path, "rb") as image: |
|
image_content = image.read() |
|
|
|
name = client.processor_version_path( |
|
self.project_id, |
|
self.location, |
|
self.processor_id, |
|
self.processor_version |
|
) |
|
request = documentai.ProcessRequest( |
|
name=name, |
|
raw_document=documentai.RawDocument( |
|
content=image_content, mime_type=mime_type |
|
), |
|
process_options=process_options, |
|
) |
|
|
|
result = client.process_document(request=request) |
|
|
|
return result.document |
|
|
|
def infer(self, file_path): |
|
"""Infer the layout of the documents in the given file path |
|
Args: |
|
file_path (str): the path to the file or directory containing the documents to process |
|
""" |
|
paths = read_file_paths(file_path, supported_formats=self.formats) |
|
|
|
error_files = [] |
|
|
|
result_dict = {} |
|
for idx, filepath in enumerate(paths): |
|
print("({}/{}) {}".format(idx+1, len(paths), filepath)) |
|
|
|
if filepath.suffix == ".pdf": |
|
mime_type = "application/pdf" |
|
elif filepath.suffix == ".jpg" or filepath.suffix == ".jpeg": |
|
mime_type = "image/jpeg" |
|
elif filepath.suffix == ".png": |
|
mime_type = "image/png" |
|
else: |
|
raise NotImplementedError |
|
|
|
filename = filepath.name |
|
|
|
if filename in self.processed_data.keys(): |
|
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") |
|
continue |
|
|
|
try: |
|
document_dict = self.process_document_layout_sample(filepath, mime_type) |
|
except Exception as e: |
|
print(e) |
|
print("Error processing document..") |
|
error_files.append(filepath) |
|
continue |
|
|
|
result_dict[filename] = document_dict |
|
|
|
result_dict = self.post_process(result_dict) |
|
|
|
with open(self.save_path, "w") as f: |
|
json.dump(result_dict, f) |
|
|
|
for error_file in error_files: |
|
print(f"Error processing file: {error_file}") |
|
|
|
print("Finished processing all documents") |
|
print("Results saved to: {}".format(self.save_path)) |
|
print("Number of errors: {}".format(len(error_files))) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = argparse.ArgumentParser() |
|
args.add_argument( |
|
"--data_path", |
|
type=str, default="", required=True, |
|
help="Path containing the documents to process" |
|
) |
|
args.add_argument( |
|
"--save_path", |
|
type=str, default="", required=True, |
|
help="Path to save the results" |
|
) |
|
args.add_argument( |
|
"--input_formats", |
|
type=list, default=[ |
|
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" |
|
], |
|
help="Supported input file formats" |
|
) |
|
args = args.parse_args() |
|
|
|
google_inference = GoogleInference( |
|
args.save_path, |
|
input_formats=args.input_formats |
|
) |
|
google_inference.infer(args.data_path) |
|
|