|
""" |
|
Most of the code in this file is derived from the paper "Image-based table recognition: data, model, and evaluation". |
|
The original paper can be accessed at: https://arxiv.org/pdf/1911.10683. |
|
The code is available at: https://github.com/ibm-aur-nlp/PubTabNet. |
|
A slight modification has been added to the code to improve the evaluation process. |
|
""" |
|
|
|
import distance |
|
|
|
from bs4 import BeautifulSoup |
|
|
|
from lxml import etree, html |
|
from collections import deque |
|
from apted.helpers import Tree |
|
from apted import APTED, Config |
|
|
|
|
|
class TableTree(Tree): |
|
"""Table Tree class for APTED""" |
|
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children): |
|
self.tag = tag |
|
self.colspan = colspan |
|
self.rowspan = rowspan |
|
self.content = content |
|
self.children = list(children) |
|
|
|
def bracket(self): |
|
"""Show tree using brackets notation""" |
|
if self.tag == 'td': |
|
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \ |
|
(self.tag, self.colspan, self.rowspan, self.content) |
|
else: |
|
result = '"tag": %s' % self.tag |
|
for child in self.children: |
|
result += child.bracket() |
|
return "{{{}}}".format(result) |
|
|
|
|
|
class CustomConfig(Config): |
|
"""Custom Configuration for APTED""" |
|
@staticmethod |
|
def maximum(*sequences): |
|
"""Get maximum possible value""" |
|
return max(map(len, sequences)) |
|
|
|
def normalized_distance(self, *sequences): |
|
"""Get distance from 0 to 1""" |
|
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences) |
|
|
|
def rename(self, node1, node2): |
|
"""Compares attributes of trees""" |
|
if (node1.tag != node2.tag) or \ |
|
(node1.colspan != node2.colspan) or \ |
|
(node1.rowspan != node2.rowspan): |
|
return 1. |
|
if node1.tag == 'td': |
|
if node1.content or node2.content: |
|
return self.normalized_distance( |
|
node1.content, node2.content |
|
) |
|
return 0. |
|
|
|
|
|
class TEDSEvaluator(object): |
|
"""Tree Edit Distance basead Similarity""" |
|
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None): |
|
assert isinstance(n_jobs, int) and (n_jobs >= 1), ( |
|
'n_jobs must be an integer greather than 1' |
|
) |
|
self.structure_only = structure_only |
|
self.n_jobs = n_jobs |
|
self.ignore_nodes = ignore_nodes |
|
self.__tokens__ = [] |
|
|
|
def tokenize(self, node): |
|
"""Tokenizes table cells""" |
|
self.__tokens__.append('<%s>' % node.tag) |
|
if node.text is not None: |
|
self.__tokens__ += list(node.text) |
|
for n in node.getchildren(): |
|
self.tokenize(n) |
|
if node.tag != 'unk': |
|
self.__tokens__.append('</%s>' % node.tag) |
|
if node.tag != 'td' and node.tail is not None: |
|
self.__tokens__ += list(node.tail) |
|
|
|
def load_html_tree(self, node, parent=None): |
|
"""Converts HTML tree to the format required by apted""" |
|
global __tokens__ |
|
if node.tag == 'td': |
|
if self.structure_only: |
|
cell = [] |
|
else: |
|
self.__tokens__ = [] |
|
self.tokenize(node) |
|
cell = self.__tokens__[1:-1].copy() |
|
new_node = TableTree( |
|
node.tag, |
|
int(node.attrib.get('colspan', '1')), |
|
int(node.attrib.get('rowspan', '1')), |
|
cell, *deque() |
|
) |
|
else: |
|
new_node = TableTree(node.tag, None, None, None, *deque()) |
|
if parent is not None: |
|
parent.children.append(new_node) |
|
if node.tag != 'td': |
|
for n in node.getchildren(): |
|
self.load_html_tree(n, new_node) |
|
if parent is None: |
|
return new_node |
|
|
|
def evaluate(self, pred, true): |
|
"""Computes TEDS score between the prediction and the ground truth of a given sample""" |
|
if (not pred) or (not true): |
|
return 0.0 |
|
parser = html.HTMLParser(remove_comments=True, encoding='utf-8') |
|
pred = html.fromstring(pred, parser=parser) |
|
true = html.fromstring(true, parser=parser) |
|
|
|
if pred.xpath('body/table') and true.xpath('body/table'): |
|
pred = pred.xpath('body/table')[0] |
|
true = true.xpath('body/table')[0] |
|
if self.ignore_nodes: |
|
etree.strip_tags(pred, *self.ignore_nodes) |
|
etree.strip_tags(true, *self.ignore_nodes) |
|
n_nodes_pred = len(pred.xpath('.//*')) |
|
n_nodes_true = len(true.xpath('.//*')) |
|
n_nodes = max(n_nodes_pred, n_nodes_true) |
|
tree_pred = self.load_html_tree(pred) |
|
tree_true = self.load_html_tree(true) |
|
distance = APTED(tree_pred, tree_true, CustomConfig()).compute_edit_distance() |
|
return 1.0 - (float(distance) / n_nodes) |
|
else: |
|
return 0.0 |
|
|
|
|
|
def remove_table_tags(html_text : str) -> str: |
|
"""Remove the <table> tags from the html text. |
|
|
|
Args: |
|
html_text (str): The html text to remove the <table> tags from. |
|
Returns: |
|
str: The html text without the <table> tags. |
|
""" |
|
if "<table>" not in html_text: |
|
return html_text |
|
|
|
soup = BeautifulSoup(html_text, 'html.parser') |
|
|
|
|
|
table_contents = '' |
|
for tag in soup.table.find_all(recursive=False): |
|
table_contents += str(tag) |
|
|
|
return table_contents |
|
|
|
|
|
def extract_tables( |
|
data : dict, is_pred_data : bool = False |
|
) -> str: |
|
"""Extract tables from the dictionary data. |
|
|
|
Args: |
|
data (dict): The data to extract tables from. |
|
|
|
Returns: |
|
str: The extracted tables from the data and a boolean indicating if the data has a table. |
|
""" |
|
|
|
|
|
html = '<html><body>' |
|
for elem in data['elements']: |
|
if elem['category'].lower() == 'table': |
|
if is_pred_data: |
|
table_html = remove_table_tags(elem['content']['html']) |
|
else: |
|
table_html = elem['content']['html'] |
|
|
|
html += f'<table>{table_html}</table>' |
|
html += '</body></html>' |
|
|
|
return html |
|
|
|
|
|
def has_table_content(html_data : str) -> bool: |
|
"""Check if the table has content between <html><body> and </body></html>. |
|
|
|
Args: |
|
html_data (str): The html data to check. |
|
Returns: |
|
bool: True if the table has content, False otherwise |
|
""" |
|
has_content = True |
|
if html_data.replace('<html><body>', '').replace('</body></html>', '') == '': |
|
has_content = False |
|
|
|
return has_content |
|
|
|
|
|
def prepare_table_dataset(gt_data, pred_data): |
|
"""Prepare the tables for evaluation. |
|
Args: |
|
gt_data (dict): The ground truth dataset to evaluate. |
|
pred_data (dict): The predicted dataset to evaluate. |
|
|
|
Returns: |
|
tuple (list, list): The list of ground truth and predicted tables. |
|
""" |
|
|
|
gt_table_list = [] |
|
pred_table_list = [] |
|
for image_key in gt_data.keys(): |
|
|
|
gt_elem = gt_data.get(image_key) |
|
pred_elem = pred_data.get(image_key) |
|
|
|
gt_tables = extract_tables(gt_elem) |
|
pred_tables = extract_tables(pred_elem, is_pred_data=True) |
|
|
|
if not has_table_content(gt_tables): |
|
continue |
|
|
|
gt_table_list.append(gt_tables) |
|
pred_table_list.append(pred_tables) |
|
|
|
return gt_table_list, pred_table_list |
|
|
|
|
|
def calc_table_score(gt_string, pred_string, evaluator): |
|
"""Calculate the table evaluation score between the gold and pred strings. |
|
|
|
Args: |
|
gt_string (str): The ground truth html string to compare. |
|
pred_string (str): The predicted html string to compare. |
|
evaluator (TEDS/TEDS-S): The TEDS/TEDS-S evaluator to use. |
|
Returns: |
|
float: The table evaluation score. |
|
""" |
|
refined_pred = pred_string |
|
refined_gold = gt_string |
|
if pred_string.startswith('<table>') and pred_string.endswith('</table>'): |
|
refined_pred = '<html><body>' + pred_string + '</body></html>' |
|
elif not pred_string.startswith('<html><body><table>') and not pred_string.endswith('</table></body></html>'): |
|
refined_pred = '<html><body><table>' + refined_pred + '</table></body></html>' |
|
|
|
if gt_string.startswith('<table>') and gt_string.endswith('</table>'): |
|
refined_gold = '<html><body>' + gt_string + '</body></html>' |
|
elif not gt_string.startswith('<html><body><table>') and not gt_string.endswith('</table></body></html>'): |
|
refined_gold = '<html><body><table>' + refined_gold + '</table></body></html>' |
|
|
|
|
|
for tok in ['<thead>', '</thead>', '<tbody>', '</tbody>']: |
|
refined_pred = refined_pred.replace(tok, '') |
|
refined_gold = refined_gold.replace(tok, '') |
|
|
|
score = evaluator.evaluate(refined_pred, refined_gold) |
|
|
|
return score |
|
|
|
|
|
def evaluate_table( |
|
gt : dict, |
|
pred : dict |
|
) -> tuple: |
|
"""Evaluate the table of the gt against the pred. |
|
|
|
Args: |
|
gt (dict): The gt layout to evaluate. |
|
pred (dict): The pred layout to evaluate against. |
|
|
|
Returns: |
|
tuple(float, float): The TEDS and TEDS-S scores for the table evaluation. |
|
""" |
|
|
|
gt_table_list, pred_table_list = prepare_table_dataset(gt, pred) |
|
|
|
avg_teds_score = 0.0 |
|
avg_teds_s_score = 0.0 |
|
|
|
if len(gt_table_list) == 0: |
|
print('[Warning] No tables found in the ground truth dataset.') |
|
elif len(pred_table_list) == 0: |
|
print('[Warning] No tables found in the prediction dataset.') |
|
else: |
|
|
|
|
|
table_evaluator = TEDSEvaluator(structure_only=True) |
|
teds_s_scores = [] |
|
for gt_table_elem, pred_table_elem in zip(gt_table_list, pred_table_list): |
|
teds_s_score = calc_table_score(gt_table_elem, pred_table_elem, table_evaluator) |
|
teds_s_scores.append(teds_s_score) |
|
avg_teds_s_score= sum(teds_s_scores) / len(teds_s_scores) |
|
|
|
|
|
|
|
table_evaluator = TEDSEvaluator(structure_only=False) |
|
teds_scores = [] |
|
for gt_table_elem, pred_table_elem in zip(gt_table_list, pred_table_list): |
|
teds_score = calc_table_score(gt_table_elem, pred_table_elem, table_evaluator) |
|
teds_scores.append(teds_score) |
|
avg_teds_score = sum(teds_scores) / len(teds_scores) |
|
|
|
return avg_teds_score, avg_teds_s_score |
|
|