Datasets:

ArXiv:
License:
File size: 5,701 Bytes
b837da3
 
d585e51
 
b837da3
d585e51
 
b837da3
 
 
 
 
 
 
 
 
d585e51
 
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d585e51
 
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d585e51
 
b837da3
 
 
 
 
 
 
 
 
 
d585e51
 
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
d585e51
 
b837da3
 
 
 
 
 
 
 
 
 
 
cb40a1c
b837da3
cb40a1c
b837da3
d585e51
 
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Document Parsing Models - Inference Guide
## Overview
The scripts in this folder allow users to extract structured data from unstructured documents using different document parsing services and libraries. 
Each service follows a standard installation procedure and provides an `infer_*` script to perform inference on PDF or Image samples.

You can choose from document parsing products such as **Upstage DP**, **AWS Textract**, **Google Document AI**, **Microsoft Azure Form Recognizer**, **LlamaParse**, or **Unstructured**. 
Most of these services require an API key for access, so ensure you follow specific setup instructions for each product to configure the environment correctly.    

Each service generates a JSON output file in a consistent format.
You can find detailed information about the output format [here](https://github.com/UpstageAI/document-parse-benchmark-private?tab=readme-ov-file#dataset-format).


## Upstage

Follow the [official Upstage DP Documentation](https://developers.upstage.ai/docs/apis/document-parse) to set up Upstage for Document Parsing.

**Note:** Ensure that the `UPSTAGE_ENDPOINT` and `UPSTAGE_API_KEY` variables are set up to run the code.

Use the script below to make an inference:
```
$ python infer_upstage.py \
    --data_path <path to the benchmark dataset> \
    --save_path <path to save the .json file>
```

## AWS
To use AWS Textract for document parsing, install AWS CLI and Boto3 for API interaction:

```
$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
$ unzip awscliv2.zip
$ sudo ./aws/install
$ aws configure
$ pip install boto3
```
Refer to the [AWS Textract Documentation](https://docs.aws.amazon.com/en_us/textract/latest/dg/getting-started.html) for detailed instructions.  

**Note:** To run the AWS inference code, you need to set the following variables: `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, `AWS_REGION`, and `AWS_S3_BUCKET_NAME`.

Use the script below to make an inference:
```
$ python infer_aws.py \
    --data_path <path to the benchmark dataset> \
    --save_path <path to save the .json file>
```

## Google
Install Google Cloud SDK and Google Document AI for document parsing on Google's platform:

```
$ apt-get install apt-transport-https ca-certificates gnupg curl
$ curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | gpg --dearmor -o /usr/share/keyrings/cloud.google.gpg
$ echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.list
$ apt-get update && apt-get install google-cloud-cli
$ gcloud init
$ pip install google-cloud-documentai
```

More information can be found in the [Google Document AI Documentation](https://console.cloud.google.com/ai/document-ai?hl=en)  

**Note:** To run the Google inference code, you need to set the following variables: `GOOGLE_PROJECT_ID`, `GOOGLE_PROCESSOR_ID`, `GOOGLE_LOCATION`, and `GOOGLE_ENDPOINT`.

Use the script below to make an inference:
```
$ python infer_google.py \
    --data_path <path to the benchmark dataset> \
    --save_path <path to save the .json file>
```

## LlamaParse
Refer to the [official LlamaParse Documentation](https://docs.cloud.llamaindex.ai/category/API/parsing) to install and use LlamaParse for document analysis.  

**Note:** Ensure that the `LLAMAPARSE_API_KEY`, `LLAMAPARSE_POST_URL`, and `LLAMAPARSE_GET_URL` variables are set before running the code.

Use the script below to make an inference:
```
$ python infer_llamaparse.py \
    --data_path <path to the benchmark dataset> \
    --save_path <path to save the .json file>
```

## Microsoft
Install the Azure AI Form Recognizer SDK:
```
$ pip install azure-ai-formrecognizer==3.3.0
```
See the [Microsoft Azure Form Recognizer Documentation](https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/quickstarts/get-started-sdks-rest-api?view=doc-intel-3.0.0&preserve-view=true&pivots=programming-language-python) for additional details.  

**Note:** Set the `MICROSOFT_API_KEY` and `MICROSOFT_ENDPOINT` variables before running the code.

Use the script below to make an inference:
```
$ python infer_microsoft.py \
    --data_path <path to the benchmark dataset> \
    --save_path <path to save the .json file>
```

## Unstructured

To handle various document formats with Unstructured, follow the steps below:
```
$ pip install "unstructured-client"
```
Detailed installation instructions can be found [here](https://docs.unstructured.io/api-reference/api-services/sdk-python). 

**Note:** To run the Unstructured inference code, you must set the `UNSTRUCTURED_API_KEY` and `UNSTRUCTURED_URL` variables.

Use the script below to make an inference:
```
$ python infer_unstructured.py \
    --data_path <path to the benchmark dataset> \
    --save_path <path to save the .json file>
```

# Standardize Layout Class Mapping
Within each `infer_*` script, a `CATEGORY_MAP` is defined to standardize the mapping of layout elements across different products.  
This ensures uniform evaluation by mapping the extracted document layout classes to the standardized layout categories for comparative analysis and evaluation purposes.  

Be sure to modify the `CATEGORY_MAP` in the inference scripts according to the document layout categories you are working with for accurate results.  

Below is an example of a [CATEGORY_MAP](https://github.com/UpstageAI/document-parse-benchmark-private/blob/776d9212fedb4a07671dcba666f400faf3faad4c/scripts/infer_llamaparse.py#L13) used inside LlamaParse inference script: 
```
CATEGORY_MAP = {
    "text": "paragraph",
    "heading": "heading1",
    "table": "table"
}
```