Datasets:

ArXiv:
License:
File size: 5,750 Bytes
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb40a1c
 
 
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb40a1c
 
 
b837da3
 
cb40a1c
b837da3
 
cb40a1c
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb40a1c
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2a241
b837da3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import time
import json
import argparse
from pathlib import Path

import unstructured_client
from unstructured_client.models import operations, shared

from utils import read_file_paths, validate_json_save_path, load_json_file


CATEGORY_MAP = {
    "NarrativeText": "paragraph",
    "ListItem": "paragraph",
    "Title": "heading1",
    "Address": "paragraph",
    "Header": "header",
    "Footer": "footer",
    "UncategorizedText": "paragraph",
    "Formula": "equation",
    "FigureCaption": "caption",
    "Table": "table",
    "PageBreak": "paragraph",
    "Image": "figure",
    "PageNumber": "paragraph",
    "CodeSnippet": "paragraph"
}


class UnstructuredInference:
    def __init__(
        self,
        save_path,
        input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
    ):
        """Initialize the UnstructuredInference class
        Args:
            save_path (str): the json path to save the results
            input_formats (list, optional): the supported file formats.
        """
        self.formats = input_formats

        self.api_key = os.getenv("UNSTRUCTURED_API_KEY") or ""
        self.url = os.getenv("UNSTRUCTURED_URL") or ""

        if not self.api_key or not self.url:
            raise ValueError("Please set the environment variables for Unstructured")

        self.languages = ["eng", "kor"]
        self.get_coordinates = True
        self.infer_table_structure = True

        # create save basepath
        validate_json_save_path(save_path)
        self.save_path = save_path
        self.processed_data = load_json_file(save_path)

        self.client = unstructured_client.UnstructuredClient(
            api_key_auth=self.api_key,
            server_url=self.url,
        )

    def post_process(self, data):
        processed_dict = {}
        for input_key in data.keys():
            output_data = data[input_key]

            processed_dict[input_key] = {
                "elements": []
            }

            id_counter = 0
            for elem in output_data:
                transcription = elem["text"]
                category = CATEGORY_MAP.get(elem["type"], "paragraph")
                if elem["metadata"]["coordinates"] is None:
                    continue

                xy_coord = [{"x": x, "y": y} for x, y in elem["metadata"]["coordinates"]["points"]]

                if category == "table":
                    transcription = elem["metadata"]["text_as_html"]

                data_dict = {
                    "coordinates": xy_coord,
                    "category": category,
                    "id": id_counter,
                    "content": {
                        "text": str(transcription) if category != "table" else "",
                        "html": transcription if category == "table" else "",
                        "markdown": ""
                    }
                }
                processed_dict[input_key]["elements"].append(data_dict)

                id_counter += 1

        for key in self.processed_data:
            processed_dict[key] = self.processed_data[key]

        return processed_dict

    def infer(self, file_path):
        """Infer the layout of the documents in the given file path
        Args:
            file_path (str): the path to the file or directory containing the documents to process
        """
        paths = read_file_paths(file_path, supported_formats=self.formats)

        error_files = []

        result_dict = {}
        for filepath in paths:
            print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath))
            filename = filepath.name
            if filename in self.processed_data.keys():
                print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
                continue

            with open(filepath, "rb") as f:
                data = f.read()

            req = operations.PartitionRequest(
                partition_parameters=shared.PartitionParameters(
                    files=shared.Files(
                        content=data,
                        file_name=str(filepath),
                    ),
                    # --- Other partition parameters ---
                    strategy=shared.Strategy.HI_RES,
                    pdf_infer_table_structure=self.infer_table_structure,
                    coordinates=self.get_coordinates,
                    languages=self.languages,
                ),
            )

            try:
                res = self.client.general.partition(request=req)
                elements = res.elements
            except Exception as e:
                print(e)
                print("Error processing document..")
                error_files.append(filepath)
                continue

            result_dict[filename] = elements

        result_dict = self.post_process(result_dict)

        with open(self.save_path, "w") as f:
            json.dump(result_dict, f)


if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument(
        "--data_path",
        type=str, default="", required=True,
        help="Path containing the documents to process"
    )
    args.add_argument(
        "--save_path",
        type=str, default="", required=True,
        help="Path to save the results"
    )
    args.add_argument(
        "--input_formats",
        type=list, default=[
            ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
        ],
        help="Supported input file formats"
    )
    args = args.parse_args()

    unstructured_inference = UnstructuredInference(
        args.save_path,
        input_formats=args.input_formats
    )
    unstructured_inference.infer(args.data_path)