Datasets:

ArXiv:
License:
File size: 7,220 Bytes
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import json
import argparse

from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

from utils import read_file_paths, validate_json_save_path, load_json_file


CATEGORY_MAP = {
    "Title": "heading1",
    "SectionHeading": "heading1",
    "footnote": "footnote",
    "PageHeader": "header",
    "PageFooter": "footer",
    "Paragraph": "paragraph",
    "Subheading": "heading1",
    "SectionMarks": "paragraph",
    "PageNumber": "paragraph"
}


class MicrosoftInference:
    def __init__(
        self,
        save_path,
        input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
    ):
        """Initialize the MicrosoftInference class
        Args:
            save_path (str): the json path to save the results
            input_formats (list, optional): the supported file formats.
        """
        KEY = os.getenv("MICROSOFT_API_KEY") or ""
        ENDPOINT = os.getenv("MICROSOFT_ENDPOINT") or ""

        self.document_analysis_client = DocumentAnalysisClient(
            endpoint=ENDPOINT, credential=AzureKeyCredential(KEY)
        )

        validate_json_save_path(save_path)
        self.save_path = save_path
        self.processed_data = load_json_file(save_path)

        self.formats = input_formats

    def post_process(self, data):
        processed_dict = {}
        for input_key in data.keys():
            output_data = data[input_key]

            processed_dict[input_key] = {
                "elements": []
            }

            id_counter = 0
            for par_elem in output_data["paragraphs"]:
                category = par_elem["role"]
                category = CATEGORY_MAP.get(category, "paragraph")

                transcription = par_elem["content"]
                coord = [[pt["x"], pt["y"]] for pt in par_elem["bounding_regions"][0]["polygon"]]
                xy_coord = [{"x": x, "y": y} for x, y in coord]

                data_dict = {
                    "coordinates": xy_coord,
                    "category": category,
                    "id": id_counter,
                    "content": {
                        "text": transcription,
                        "html": "",
                        "markdown": ""
                    }
                }
                processed_dict[input_key]["elements"].append(data_dict)

                id_counter += 1

            html_transcription = ""
            for table_elem in output_data["tables"]:
                coord = [[pt["x"], pt["y"]] for pt in table_elem["bounding_regions"][0]["polygon"]]
                xy_coord = [{"x": x, "y": y} for x, y in coord]

                category = "table"

                html_transcription += "<table>"

                # Create a matrix to represent the table
                table_matrix = [
                    ["" for _ in range(table_elem["column_count"])] for _ in range(table_elem["row_count"])
                ]

                # Fill the matrix with table data
                for cell in table_elem["cells"]:
                    row = cell["row_index"]
                    col = cell["column_index"]
                    rowspan = cell.get("row_span", 1)
                    colspan = cell.get("column_span", 1)
                    content = cell["content"]

                    # Insert content into the matrix, handle rowspan and colspan
                    for r in range(row, row + rowspan):
                        for c in range(col, col + colspan):
                            if r == row and c == col:
                                table_matrix[r][c] = f"<td rowspan='{rowspan}' colspan='{colspan}'>{content}</td>"
                            else:
                                # Mark cells covered by rowspan or colspan
                                table_matrix[r][c] = None

                # Generate HTML from the matrix
                for row in table_matrix:
                    html_transcription += "<tr>"
                    for cell in row:
                        if cell is not None:
                            html_transcription += f"{cell}"
                    html_transcription += "</tr>"

                html_transcription += "</table>"

                data_dict = {
                    "coordinates": xy_coord,
                    "category": category,
                    "id": id_counter,
                    "content": {
                        "text": "",
                        "html": html_transcription,
                        "markdown": ""
                    }
                }
                processed_dict[input_key]["elements"].append(data_dict)

                id_counter += 1

        for key in self.processed_data:
            processed_dict[key] = self.processed_data[key]

        return processed_dict


    def infer(self, file_path):
        """Infer the layout of the documents in the given file path
        Args:
            file_path (str): the path to the file or directory containing the documents to process
        """
        paths = read_file_paths(file_path, supported_formats=self.formats)

        error_files = []

        result_dict = {}
        for idx, filepath in enumerate(paths):
            print("({}/{}) {}".format(idx+1, len(paths), filepath))

            filename = filepath.name
            if filename in self.processed_data.keys():
                print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
                continue

            input_data = open(filepath, "rb")

            try:
                poller = self.document_analysis_client.begin_analyze_document(
                    "prebuilt-layout", document=input_data
                )
                result = poller.result()

                json_result = result.to_dict()
            except Exception as e:
                print(e)
                print("Error processing document..")
                error_files.append(filepath)
                continue

            result_dict[filename] = json_result

        result_dict = self.post_process(result_dict)

        with open(self.save_path, "w") as f:
            json.dump(result_dict, f)

        for error_file in error_files:
            print(f"Error processing file: {error_file}")

        print("Finished processing all documents")
        print("Results saved to: {}".format(self.save_path))
        print("Number of errors: {}".format(len(error_files)))


if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument(
        "--data_path",
        type=str, default="", required=True,
        help="Path containing the documents to process"
    )
    args.add_argument(
        "--save_path",
        type=str, default="", required=True,
        help="Path to save the results"
    )
    args.add_argument(
        "--input_formats",
        type=str, default=[
            ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
        ],
        help="Supported input file formats"
    )
    args = args.parse_args()

    microsoft_inference = MicrosoftInference(
        args.save_path,
        input_formats=args.input_formats
    )
    microsoft_inference.infer(args.data_path)