File size: 7,220 Bytes
b837da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import json
import argparse
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"Title": "heading1",
"SectionHeading": "heading1",
"footnote": "footnote",
"PageHeader": "header",
"PageFooter": "footer",
"Paragraph": "paragraph",
"Subheading": "heading1",
"SectionMarks": "paragraph",
"PageNumber": "paragraph"
}
class MicrosoftInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the MicrosoftInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
KEY = os.getenv("MICROSOFT_API_KEY") or ""
ENDPOINT = os.getenv("MICROSOFT_ENDPOINT") or ""
self.document_analysis_client = DocumentAnalysisClient(
endpoint=ENDPOINT, credential=AzureKeyCredential(KEY)
)
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
self.formats = input_formats
def post_process(self, data):
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
id_counter = 0
for par_elem in output_data["paragraphs"]:
category = par_elem["role"]
category = CATEGORY_MAP.get(category, "paragraph")
transcription = par_elem["content"]
coord = [[pt["x"], pt["y"]] for pt in par_elem["bounding_regions"][0]["polygon"]]
xy_coord = [{"x": x, "y": y} for x, y in coord]
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": id_counter,
"content": {
"text": transcription,
"html": "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
html_transcription = ""
for table_elem in output_data["tables"]:
coord = [[pt["x"], pt["y"]] for pt in table_elem["bounding_regions"][0]["polygon"]]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = "table"
html_transcription += "<table>"
# Create a matrix to represent the table
table_matrix = [
["" for _ in range(table_elem["column_count"])] for _ in range(table_elem["row_count"])
]
# Fill the matrix with table data
for cell in table_elem["cells"]:
row = cell["row_index"]
col = cell["column_index"]
rowspan = cell.get("row_span", 1)
colspan = cell.get("column_span", 1)
content = cell["content"]
# Insert content into the matrix, handle rowspan and colspan
for r in range(row, row + rowspan):
for c in range(col, col + colspan):
if r == row and c == col:
table_matrix[r][c] = f"<td rowspan='{rowspan}' colspan='{colspan}'>{content}</td>"
else:
# Mark cells covered by rowspan or colspan
table_matrix[r][c] = None
# Generate HTML from the matrix
for row in table_matrix:
html_transcription += "<tr>"
for cell in row:
if cell is not None:
html_transcription += f"{cell}"
html_transcription += "</tr>"
html_transcription += "</table>"
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": id_counter,
"content": {
"text": "",
"html": html_transcription,
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for idx, filepath in enumerate(paths):
print("({}/{}) {}".format(idx+1, len(paths), filepath))
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
input_data = open(filepath, "rb")
try:
poller = self.document_analysis_client.begin_analyze_document(
"prebuilt-layout", document=input_data
)
result = poller.result()
json_result = result.to_dict()
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict[filename] = json_result
result_dict = self.post_process(result_dict)
with open(self.save_path, "w") as f:
json.dump(result_dict, f)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=str, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
microsoft_inference = MicrosoftInference(
args.save_path,
input_formats=args.input_formats
)
microsoft_inference.infer(args.data_path)
|