Datasets:

ArXiv:
License:
File size: 14,131 Bytes
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os
import cv2
import json
import time
import boto3
import argparse

from utils import read_file_paths, validate_json_save_path, load_json_file

CATEGORY_MAP = {
    "LAYOUT_TEXT": "paragraph",
    "LAYOUT_LIST": "list",
    "LAYOUT_HEADER": "header",
    "LAYOUT_FOOTER": "footer",
    "LAYOUT_PAGE_NUMBER": "paragraph",
    "LAYOUT_FIGURE": "figure",
    "LAYOUT_TABLE": "table",
    "LAYOUT_TITLE": "heading1",
    "LAYOUT_SECTION_HEADER": "heading1",
    "TABLE": "table"
}


class AWSInference:
    def __init__(
        self,
        save_path,
        input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
    ):
        """Initialize the AWSInference class
        Args:
            save_path (str): the json path to save the results
            input_formats (list, optional): the supported file formats.
        """
        AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") or ""
        AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") or ""
        AWS_REGION = os.getenv("AWS_REGION") or ""
        AWS_S3_BUCKET_NAME = os.getenv("AWS_S3_BUCKET_NAME") or ""
        self.client = boto3.client(
            "textract",
            region_name=AWS_REGION,
            aws_access_key_id=AWS_ACCESS_KEY_ID,
            aws_secret_access_key=AWS_SECRET_ACCESS_KEY
        )

        self.s3 = boto3.resource("s3")
        self.s3_bucket_name = AWS_S3_BUCKET_NAME

        validate_json_save_path(save_path)
        self.save_path = save_path
        self.processed_data = load_json_file(save_path)

        self.formats = input_formats

    def post_process(self, data):
        def get_text(result, blocks_map):
            text = ""
            if "Relationships" in result:
                for relationship in result["Relationships"]:
                    if relationship["Type"] == "CHILD":
                        for child_id in relationship["Ids"]:
                            word = blocks_map[child_id]
                            if word["BlockType"] == "WORD":
                                text += " " + word["Text"]
            return text[1:]

        processed_dict = {}
        for input_key in data.keys():
            output_data = data[input_key]

            processed_dict[input_key] = {
                "elements": []
            }

            all_elems = {}
            for page_data in output_data:
                for elem in page_data["Blocks"]:
                    _id = elem["Id"]
                    all_elems[_id] = elem

            for page_data in output_data:
                for idx, elem in enumerate(page_data["Blocks"]):
                    if elem["BlockType"] == "LAYOUT_LIST":
                        continue

                    if "LAYOUT" in elem["BlockType"] and elem["BlockType"] != "LAYOUT_TABLE":

                        bbox = elem["Geometry"]["BoundingBox"]

                        x = bbox["Left"]
                        y = bbox["Top"]
                        w = bbox["Width"]
                        h = bbox["Height"]

                        coord = [
                            [x, y],
                            [x + w, y],
                            [x + w, y + h],
                            [x, y + h]
                        ]
                        xy_coord = [{"x": x, "y": y} for x, y in coord]

                        category = CATEGORY_MAP.get(elem["BlockType"], "paragraph")

                        transcription = ""

                        if elem["BlockType"] != "LAYOUT_FIGURE":
                            for item in all_elems[elem["Id"]]["Relationships"]:
                                for id_ in item["Ids"]:
                                    if all_elems[id_]["BlockType"] == "LINE":
                                        word = all_elems[id_]["Text"]
                                        transcription += word + "\n"

                        data_dict = {
                            "coordinates": xy_coord,
                            "category": category,
                            "id": idx,
                            "content": {
                                "text": transcription,
                                "html": "",
                                "markdown": ""
                            }
                        }
                        processed_dict[input_key]["elements"].append(data_dict)

                    elif elem["BlockType"] == "TABLE":

                        bbox = elem["Geometry"]["BoundingBox"]

                        x = bbox["Left"]
                        y = bbox["Top"]
                        w = bbox["Width"]
                        h = bbox["Height"]

                        coord = [
                            [x, y],
                            [x + w, y],
                            [x + w, y + h],
                            [x, y + h]
                        ]
                        xy_coord = [{"x": x, "y": y} for x, y in coord]

                        category = CATEGORY_MAP.get(elem["BlockType"], "paragraph")

                        table_cells = {}
                        for relationship in elem["Relationships"]:
                            if relationship["Type"] == "CHILD":
                                for cell_id in relationship["Ids"]:
                                    cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None)
                                    if cell_block is not None and cell_block["BlockType"] == "CELL":
                                        row_index = cell_block["RowIndex"] - 1
                                        column_index = cell_block["ColumnIndex"] - 1
                                        row_span = cell_block["RowSpan"]
                                        column_span = cell_block["ColumnSpan"]
                                        table_cells[(row_index, column_index)] = {
                                            "block": cell_block,
                                            "span": (row_span, column_span),
                                            "text": get_text(cell_block, all_elems),
                                        }
                        max_row_index = max(cell[0] for cell in table_cells.keys())
                        max_column_index = max(cell[1] for cell in table_cells.keys())
                        for relationship in elem["Relationships"]:
                            if relationship["Type"] == "MERGED_CELL":
                                for cell_id in relationship["Ids"]:
                                    cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None)
                                    if cell_block is not None and cell_block["BlockType"] == "MERGED_CELL":
                                        row_index = cell_block["RowIndex"] - 1
                                        column_index = cell_block["ColumnIndex"] - 1
                                        row_span = cell_block["RowSpan"]
                                        column_span = cell_block["ColumnSpan"]
                                        for i in range(row_span):
                                            for j in range(column_span):
                                                del table_cells[(row_index + i, column_index + j)]
                                        text = ""
                                        for child_ids in cell_block["Relationships"][0]["Ids"]:
                                            child_cell_block = next((block for block in page_data["Blocks"] if block["Id"] == child_ids), None)
                                            text += " " + get_text(child_cell_block, all_elems)
                                        table_cells[(row_index, column_index)] = {
                                            "block": cell_block,
                                            "span": (row_span, column_span),
                                            "text": text[1:],
                                        }
                        html_table = "<table>"

                        for row_index in range(max_row_index + 1):
                            html_table += "<tr>"
                            for column_index in range(max_column_index + 1):
                                cell_data = table_cells.get((row_index, column_index))
                                if cell_data:
                                    cell_block = cell_data["block"]
                                    row_span, column_span = cell_data["span"]

                                    cell_text = cell_data["text"]
                                    html_table += f"<td rowspan='{row_span}' colspan='{column_span}''>{cell_text}</td>"
                            html_table += "</tr>"
                        html_table += "</table>"

                        data_dict = {
                            "coordinates": xy_coord,
                            "category": category,
                            "id": idx,
                            "content": {
                                "text": "",
                                "html": html_table,
                                "markdown": ""
                            }
                        }
                        processed_dict[input_key]["elements"].append(data_dict)

        for key in self.processed_data:
            processed_dict[key] = self.processed_data[key]

        return processed_dict


    def start_job(self, object_name):
        filename_with_ext = os.path.basename(object_name)

        print(f"uploading {filename_with_ext} to s3")
        self.s3.Bucket(self.s3_bucket_name).upload_file(object_name, filename_with_ext)

        response = None
        response = self.client.start_document_analysis(
            DocumentLocation={
                "S3Object": {
                    "Bucket": self.s3_bucket_name,
                    "Name": filename_with_ext
                }
            },
            FeatureTypes = ["LAYOUT", "TABLES"]
        )

        return response["JobId"]

    def is_job_complete(self, job_id):
        time.sleep(1)
        response = self.client.get_document_analysis(JobId=job_id)
        status = response["JobStatus"]
        print("Job status: {}".format(status))

        while(status == "IN_PROGRESS"):
            time.sleep(1)
            response = self.client.get_document_analysis(JobId=job_id)
            status = response["JobStatus"]
            print("Job status: {}".format(status))

        return status

    def get_job_results(self, job_id):
        pages = []
        time.sleep(1)
        response = self.client.get_document_analysis(JobId=job_id)
        pages.append(response)
        print("Resultset page received: {}".format(len(pages)))
        next_token = None
        if "NextToken" in response:
            next_token = response["NextToken"]

        while next_token:
            time.sleep(1)
            response = self.client.\
                get_document_analysis(JobId=job_id, NextToken=next_token)
            pages.append(response)
            print("Resultset page received: {}".format(len(pages)))
            next_token = None
            if "NextToken" in response:
                next_token = response["NextToken"]

        return pages

    def infer(self, file_path):
        """Infer the layout of the documents in the given file path
        Args:
            file_path (str): the path to the file or directory containing the documents to process
        """
        paths = read_file_paths(file_path, supported_formats=self.formats)

        error_files = []

        result_dict = {}
        for idx, filepath in enumerate(paths):
            print("({}/{}) {}".format(idx+1, len(paths), filepath))

            filename = filepath.name
            if filename in self.processed_data.keys():
                print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
                continue

            try:
                if os.path.splitext(filepath)[-1] == ".pdf":
                    job_id = self.start_job(filepath)
                    print("Started job with id: {}".format(job_id))
                    if self.is_job_complete(job_id):
                        result = self.get_job_results(job_id)
                else:
                    with open(filepath, "rb") as file:
                        img_test = file.read()
                        bytes_test = bytearray(img_test)

                    result = self.client.analyze_document(
                        Document={"Bytes": bytes_test},
                        FeatureTypes = ["LAYOUT", "TABLES"]
                    )
            except Exception as e:
                print(e)
                print("Error processing document..")
                error_files.append(filepath)
                continue

            result_dict[filename] = result

        result_dict = self.post_process(result_dict)

        with open(self.save_path, "w", encoding="utf-8") as f:
            json.dump(result_dict, f, ensure_ascii=False, indent=4)

        for error_file in error_files:
            print(f"Error processing file: {error_file}")

        print("Finished processing all documents")
        print("Results saved to: {}".format(self.save_path))
        print("Number of errors: {}".format(len(error_files)))


if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument(
        "--data_path",
        type=str, default="", required=True,
        help="Path containing the documents to process"
    )
    args.add_argument(
        "--save_path",
        type=str, default="", required=True,
        help="Path to save the results"
    )
    args.add_argument(
        "--input_formats",
        type=str, default=[
            ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
        ],
        help="Supported input file formats"
    )
    args = args.parse_args()

    aws_inference = AWSInference(
        args.save_path,
        input_formats=args.input_formats
    )
    aws_inference.infer(args.data_path)