Datasets:

ArXiv:
License:
File size: 8,502 Bytes
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2a241
b837da3
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import json
import google
import argparse

from glob import glob
from typing import Optional, Sequence

from google.api_core.client_options import ClientOptions
from google.cloud import documentai

from utils import read_file_paths, validate_json_save_path, load_json_file

CATEGORY_MAP = {
    "paragraph": "paragraph",
    "footer": "footer",
    "header": "header",
    "heading-1": "heading1",
    "heading-2": "heading1",
    "heading-3": "heading1",
    "table": "table",
    "title": "heading1"
}


class GoogleInference:
    def __init__(
        self,
        save_path,
        input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
    ):
        """Initialize the GoogleInference class
        Args:
            save_path (str): the json path to save the results
            input_formats (list, optional): the supported file formats.
        """
        self.project_id = os.getenv("GOOGLE_PROJECT_ID") or ""

        self.processor_id = os.getenv("GOOGLE_PROCESSOR_ID") or ""

        self.location = os.getenv("GOOGLE_LOCATION") or ""

        self.endpoint = os.getenv("GOOGLE_ENDPOINT") or ""

        self.processor_version = "rc"

        validate_json_save_path(save_path)
        self.save_path = save_path
        self.processed_data = load_json_file(save_path)

        self.formats = input_formats

    @staticmethod
    def generate_html_table(table_data):
        html = "<table border='1'>\n"

        # Process body rows
        for row in table_data["bodyRows"]:
            html += "  <tr>\n"
            for cell in row["cells"]:
                text = cell["blocks"][0]["textBlock"]["text"] if cell["blocks"] else ""
                row_span = f" rowspan='{cell['rowSpan']}'" if cell["rowSpan"] > 1 else ""
                col_span = f" colspan='{cell['colSpan']}'" if cell["colSpan"] > 1 else ""
                html += f"    <td{row_span}{col_span}>{text}</td>\n"
            html += "  </tr>\n"

        html += "</table>"
        return html

    @staticmethod
    def iterate_blocks(data):
        block_sequence = []

        def recurse_blocks(blocks):
            for block in blocks:
                block_id = block.get("blockId", "")
                block_type = block.get("textBlock", {}).get("type", "")
                block_text = block.get("textBlock", {}).get("text", "")

                if block_type:
                    # Append block information as a tuple to the sequence list
                    block_sequence.append((block_id, block_type, block_text))

                block_id = block.get("blockId", "")
                block_table = block.get("tableBlock", {})

                if block_table:
                    block_table_html = GoogleInference.generate_html_table(block_table)
                    block_sequence.append((block_id, "table", block_table_html))

                # If the block contains sub-blocks, recurse through them
                if block.get("textBlock", {}).get("blocks", []):
                    recurse_blocks(block["textBlock"]["blocks"])

        if "documentLayout" in data:
            recurse_blocks(data["documentLayout"].get("blocks", []))

        return block_sequence

    def post_process(self, data):

        processed_dict = {}
        for input_key in data.keys():
            output_data = data[input_key]

            processed_dict[input_key] = {
                "elements": []
            }

            blocks = self.iterate_blocks(output_data)

            id_counter = 0
            for _, category, transcription in blocks:
                category = CATEGORY_MAP.get(category, "paragraph")

                data_dict = {
                    "coordinates": [[0, 0], [0, 0], [0, 0], [0, 0]],
                    "category": category,
                    "id": id_counter,
                    "content": {
                        "text": transcription if category != "table" else "",
                        "html": transcription if category == "table" else "",
                        "markdown": ""
                    }
                }
                processed_dict[input_key]["elements"].append(data_dict)

                id_counter += 1

        for key in self.processed_data:
            processed_dict[key] = self.processed_data[key]

        return processed_dict

    def process_document_layout_sample(self, file_path, mime_type, chunk_size=1000) -> None:
        process_options = documentai.ProcessOptions(
            layout_config=documentai.ProcessOptions.LayoutConfig(
                chunking_config=documentai.ProcessOptions.LayoutConfig.ChunkingConfig(
                    chunk_size=chunk_size,
                    include_ancestor_headings=True,
                )
            )
        )
        document = self.process_document(
            file_path,
            mime_type,
            process_options=process_options,
        )

        document_dict = json.loads(google.cloud.documentai_v1.Document.to_json(document))

        return document_dict

    def process_document(
        self, file_path,
        mime_type: str,
        process_options: Optional[documentai.ProcessOptions] = None,
    ) -> documentai.Document:
        client = documentai.DocumentProcessorServiceClient(
            client_options=ClientOptions(
                api_endpoint=f"{self.endpoint}"
            )
        )

        with open(file_path, "rb") as image:
            image_content = image.read()

        name = client.processor_version_path(
            self.project_id,
            self.location,
            self.processor_id,
            self.processor_version
        )
        request = documentai.ProcessRequest(
            name=name,
            raw_document=documentai.RawDocument(
                content=image_content, mime_type=mime_type
            ),
            process_options=process_options,
        )

        result = client.process_document(request=request)

        return result.document

    def infer(self, file_path):
        """Infer the layout of the documents in the given file path
        Args:
            file_path (str): the path to the file or directory containing the documents to process
        """
        paths = read_file_paths(file_path, supported_formats=self.formats)

        error_files = []

        result_dict = {}
        for idx, filepath in enumerate(paths):
            print("({}/{}) {}".format(idx+1, len(paths), filepath))

            if filepath.suffix == ".pdf":
                mime_type = "application/pdf"
            elif filepath.suffix == ".jpg" or filepath.suffix == ".jpeg":
                mime_type = "image/jpeg"
            elif filepath.suffix == ".png":
                mime_type = "image/png"
            else:
                raise NotImplementedError

            filename = filepath.name

            if filename in self.processed_data.keys():
                print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
                continue

            try:
                document_dict = self.process_document_layout_sample(filepath, mime_type)
            except Exception as e:
                print(e)
                print("Error processing document..")
                error_files.append(filepath)
                continue

            result_dict[filename] = document_dict

        result_dict = self.post_process(result_dict)

        with open(self.save_path, "w") as f:
            json.dump(result_dict, f)

        for error_file in error_files:
            print(f"Error processing file: {error_file}")

        print("Finished processing all documents")
        print("Results saved to: {}".format(self.save_path))
        print("Number of errors: {}".format(len(error_files)))


if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument(
        "--data_path",
        type=str, default="", required=True,
        help="Path containing the documents to process"
    )
    args.add_argument(
        "--save_path",
        type=str, default="", required=True,
        help="Path to save the results"
    )
    args.add_argument(
        "--input_formats",
        type=list, default=[
            ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
        ],
        help="Supported input file formats"
    )
    args = args.parse_args()

    google_inference = GoogleInference(
        args.save_path,
        input_formats=args.input_formats
    )
    google_inference.infer(args.data_path)