Datasets:

ArXiv:
License:
File size: 6,689 Bytes
b837da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2a241
b837da3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import time
import json
import markdown
import requests
import argparse
from pathlib import Path

from bs4 import BeautifulSoup
from utils import read_file_paths, validate_json_save_path, load_json_file


CATEGORY_MAP = {
    "text": "paragraph",
    "heading": "heading1",
    "table": "table"
}


class LlamaParseInference:
    def __init__(
        self,
        save_path,
        input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
    ):
        """Initialize the LlamaParseInference class
        Args:
            save_path (str): the json path to save the results
            input_formats (list, optional): the supported file formats.
        """
        self.formats = input_formats

        self.api_key = os.getenv("LLAMAPARSE_API_KEY") or ""
        self.post_url = os.getenv("LLAMAPARSE_POST_URL") or ""
        self.get_url = os.getenv("LLAMAPARSE_GET_URL") or ""

        self.headers = {
              "Accept": "application/json",
              "Authorization": f"Bearer {self.api_key}",
        }

        validate_json_save_path(save_path)
        self.save_path = save_path
        self.processed_data = load_json_file(save_path)

    def post_process(self, data):
        processed_dict = {}
        for input_key in data.keys():
            output_data = data[input_key]

            processed_dict[input_key] = {
                "elements": []
            }

            id_counter = 0
            for elem in output_data["pages"]:
                for item in elem["items"]:

                    coord = [[0, 0], [0, 0], [0, 0], [0, 0]]
                    category = item["type"]
                    if category == "table":
                        transcription = markdown.markdown(
                            item["md"],
                            extensions=["markdown.extensions.tables"]
                        )
                        transcription = transcription.replace("\n", "")
                    else:
                        transcription = item["value"]
                        pts = item["bBox"]
                        if "x" in pts and "y" in pts and \
                                "w" in pts and "h" in pts:
                            coord = [
                                [pts["x"], pts["y"]],
                                [pts["x"] + pts["w"], pts["y"]],
                                [pts["x"] + pts["w"], pts["y"] + pts["h"]],
                                [pts["x"], pts["y"] + pts["h"]],
                            ]

                    xy_coord = [{"x": x, "y": y} for x, y in coord]

                    category = CATEGORY_MAP.get(category, "paragraph")
                    data_dict = {
                        "coordinates": xy_coord,
                        "category": category,
                        "id": id_counter,
                        "content": {
                            "text": transcription if category != "table" else "",
                            "html": transcription if category == "table" else "",
                            "markdown": ""
                        }
                    }
                    processed_dict[input_key]["elements"].append(data_dict)

                    id_counter += 1

        for key in self.processed_data:
            processed_dict[key] = self.processed_data[key]

        return processed_dict

    def infer(self, file_path):
        """Infer the layout of the documents in the given file path
        Args:
            file_path (str): the path to the file or directory containing the documents to process
        """
        paths = read_file_paths(file_path, supported_formats=self.formats)

        error_files = []

        result_dict = {}
        for filepath in paths:
            print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath))

            filename = filepath.name
            if filename in self.processed_data.keys():
                print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
                continue

            try:
                with open(filepath, "rb") as file_data:
                    file_data = {
                        "file": ("dummy.pdf", file_data, "")
                    }
                    data = {
                        "invalidate_cache": True,
                        "premium_mode": True,
                        "disable_ocr": False
                    }
                    response = requests.post(
                        self.post_url, headers=self.headers, files=file_data, data=data
                    )

                result_data = response.json()
                status = result_data["status"]
                id_ = result_data["id"]

                while status == "PENDING":
                    get_url = f"{self.get_url}/{id_}"
                    response = requests.get(get_url, headers=self.headers)

                    response_json = response.json()
                    status = response_json["status"]
                    if status == "SUCCESS":
                        get_url = f"{self.get_url}/{id_}/result/json"
                        response = requests.get(get_url, headers=self.headers)
                        break

                    time.sleep(1)

                result_dict[filename] = response.json()
            except Exception as e:
                print(e)
                print("Error processing document..")
                error_files.append(filepath)
                continue

        result_dict = self.post_process(result_dict)

        with open(self.save_path, "w") as f:
            json.dump(result_dict, f)

        for error_file in error_files:
            print(f"Error processing file: {error_file}")

        print("Finished processing all documents")
        print("Results saved to: {}".format(self.save_path))
        print("Number of errors: {}".format(len(error_files)))


if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument(
        "--data_path",
        type=str, default="", required=True,
        help="Path containing the documents to process"
    )
    args.add_argument(
        "--save_path",
        type=str, default="", required=True,
        help="Path to save the results"
    )
    args.add_argument(
        "--input_formats",
        type=list, default=[
            ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
        ],
        help="Supported input file formats"
    )
    args = args.parse_args()

    llamaparse_inference = LlamaParseInference(
        args.save_path,
        input_formats=args.input_formats
    )
    llamaparse_inference.infer(args.data_path)