File size: 14,131 Bytes
b837da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
import cv2
import json
import time
import boto3
import argparse
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"LAYOUT_TEXT": "paragraph",
"LAYOUT_LIST": "list",
"LAYOUT_HEADER": "header",
"LAYOUT_FOOTER": "footer",
"LAYOUT_PAGE_NUMBER": "paragraph",
"LAYOUT_FIGURE": "figure",
"LAYOUT_TABLE": "table",
"LAYOUT_TITLE": "heading1",
"LAYOUT_SECTION_HEADER": "heading1",
"TABLE": "table"
}
class AWSInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the AWSInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") or ""
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") or ""
AWS_REGION = os.getenv("AWS_REGION") or ""
AWS_S3_BUCKET_NAME = os.getenv("AWS_S3_BUCKET_NAME") or ""
self.client = boto3.client(
"textract",
region_name=AWS_REGION,
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
)
self.s3 = boto3.resource("s3")
self.s3_bucket_name = AWS_S3_BUCKET_NAME
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
self.formats = input_formats
def post_process(self, data):
def get_text(result, blocks_map):
text = ""
if "Relationships" in result:
for relationship in result["Relationships"]:
if relationship["Type"] == "CHILD":
for child_id in relationship["Ids"]:
word = blocks_map[child_id]
if word["BlockType"] == "WORD":
text += " " + word["Text"]
return text[1:]
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
all_elems = {}
for page_data in output_data:
for elem in page_data["Blocks"]:
_id = elem["Id"]
all_elems[_id] = elem
for page_data in output_data:
for idx, elem in enumerate(page_data["Blocks"]):
if elem["BlockType"] == "LAYOUT_LIST":
continue
if "LAYOUT" in elem["BlockType"] and elem["BlockType"] != "LAYOUT_TABLE":
bbox = elem["Geometry"]["BoundingBox"]
x = bbox["Left"]
y = bbox["Top"]
w = bbox["Width"]
h = bbox["Height"]
coord = [
[x, y],
[x + w, y],
[x + w, y + h],
[x, y + h]
]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = CATEGORY_MAP.get(elem["BlockType"], "paragraph")
transcription = ""
if elem["BlockType"] != "LAYOUT_FIGURE":
for item in all_elems[elem["Id"]]["Relationships"]:
for id_ in item["Ids"]:
if all_elems[id_]["BlockType"] == "LINE":
word = all_elems[id_]["Text"]
transcription += word + "\n"
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": idx,
"content": {
"text": transcription,
"html": "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
elif elem["BlockType"] == "TABLE":
bbox = elem["Geometry"]["BoundingBox"]
x = bbox["Left"]
y = bbox["Top"]
w = bbox["Width"]
h = bbox["Height"]
coord = [
[x, y],
[x + w, y],
[x + w, y + h],
[x, y + h]
]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = CATEGORY_MAP.get(elem["BlockType"], "paragraph")
table_cells = {}
for relationship in elem["Relationships"]:
if relationship["Type"] == "CHILD":
for cell_id in relationship["Ids"]:
cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None)
if cell_block is not None and cell_block["BlockType"] == "CELL":
row_index = cell_block["RowIndex"] - 1
column_index = cell_block["ColumnIndex"] - 1
row_span = cell_block["RowSpan"]
column_span = cell_block["ColumnSpan"]
table_cells[(row_index, column_index)] = {
"block": cell_block,
"span": (row_span, column_span),
"text": get_text(cell_block, all_elems),
}
max_row_index = max(cell[0] for cell in table_cells.keys())
max_column_index = max(cell[1] for cell in table_cells.keys())
for relationship in elem["Relationships"]:
if relationship["Type"] == "MERGED_CELL":
for cell_id in relationship["Ids"]:
cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None)
if cell_block is not None and cell_block["BlockType"] == "MERGED_CELL":
row_index = cell_block["RowIndex"] - 1
column_index = cell_block["ColumnIndex"] - 1
row_span = cell_block["RowSpan"]
column_span = cell_block["ColumnSpan"]
for i in range(row_span):
for j in range(column_span):
del table_cells[(row_index + i, column_index + j)]
text = ""
for child_ids in cell_block["Relationships"][0]["Ids"]:
child_cell_block = next((block for block in page_data["Blocks"] if block["Id"] == child_ids), None)
text += " " + get_text(child_cell_block, all_elems)
table_cells[(row_index, column_index)] = {
"block": cell_block,
"span": (row_span, column_span),
"text": text[1:],
}
html_table = "<table>"
for row_index in range(max_row_index + 1):
html_table += "<tr>"
for column_index in range(max_column_index + 1):
cell_data = table_cells.get((row_index, column_index))
if cell_data:
cell_block = cell_data["block"]
row_span, column_span = cell_data["span"]
cell_text = cell_data["text"]
html_table += f"<td rowspan='{row_span}' colspan='{column_span}''>{cell_text}</td>"
html_table += "</tr>"
html_table += "</table>"
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": idx,
"content": {
"text": "",
"html": html_table,
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def start_job(self, object_name):
filename_with_ext = os.path.basename(object_name)
print(f"uploading {filename_with_ext} to s3")
self.s3.Bucket(self.s3_bucket_name).upload_file(object_name, filename_with_ext)
response = None
response = self.client.start_document_analysis(
DocumentLocation={
"S3Object": {
"Bucket": self.s3_bucket_name,
"Name": filename_with_ext
}
},
FeatureTypes = ["LAYOUT", "TABLES"]
)
return response["JobId"]
def is_job_complete(self, job_id):
time.sleep(1)
response = self.client.get_document_analysis(JobId=job_id)
status = response["JobStatus"]
print("Job status: {}".format(status))
while(status == "IN_PROGRESS"):
time.sleep(1)
response = self.client.get_document_analysis(JobId=job_id)
status = response["JobStatus"]
print("Job status: {}".format(status))
return status
def get_job_results(self, job_id):
pages = []
time.sleep(1)
response = self.client.get_document_analysis(JobId=job_id)
pages.append(response)
print("Resultset page received: {}".format(len(pages)))
next_token = None
if "NextToken" in response:
next_token = response["NextToken"]
while next_token:
time.sleep(1)
response = self.client.\
get_document_analysis(JobId=job_id, NextToken=next_token)
pages.append(response)
print("Resultset page received: {}".format(len(pages)))
next_token = None
if "NextToken" in response:
next_token = response["NextToken"]
return pages
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for idx, filepath in enumerate(paths):
print("({}/{}) {}".format(idx+1, len(paths), filepath))
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
try:
if os.path.splitext(filepath)[-1] == ".pdf":
job_id = self.start_job(filepath)
print("Started job with id: {}".format(job_id))
if self.is_job_complete(job_id):
result = self.get_job_results(job_id)
else:
with open(filepath, "rb") as file:
img_test = file.read()
bytes_test = bytearray(img_test)
result = self.client.analyze_document(
Document={"Bytes": bytes_test},
FeatureTypes = ["LAYOUT", "TABLES"]
)
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict[filename] = result
result_dict = self.post_process(result_dict)
with open(self.save_path, "w", encoding="utf-8") as f:
json.dump(result_dict, f, ensure_ascii=False, indent=4)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=str, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
aws_inference = AWSInference(
args.save_path,
input_formats=args.input_formats
)
aws_inference.infer(args.data_path)
|