File size: 6,688 Bytes
b837da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import time
import json
import markdown
import requests
import argparse
from pathlib import Path
from bs4 import BeautifulSoup
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"text": "paragraph",
"heading": "heading1",
"table": "table"
}
class LlamaParseInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the LlamaParseInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
self.formats = input_formats
self.api_key = os.getenv("LLAMAPARSE_API_KEY") or ""
self.post_url = os.getenv("LLAMAPARSE_POST_URL") or ""
self.get_url = os.getenv("LLAMAPARSE_GET_URL") or ""
self.headers = {
"Accept": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
def post_process(self, data):
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
id_counter = 0
for elem in output_data["pages"]:
for item in elem["items"]:
coord = [[0, 0], [0, 0], [0, 0], [0, 0]]
category = item["type"]
if category == "table":
transcription = markdown.markdown(
item["md"],
extensions=["markdown.extensions.tables"]
)
transcription = transcription.replace("\n", "")
else:
transcription = item["value"]
pts = item["bBox"]
if "x" in pts and "y" in pts and \
"w" in pts and "h" in pts:
coord = [
[pts["x"], pts["y"]],
[pts["x"] + pts["w"], pts["y"]],
[pts["x"] + pts["w"], pts["y"] + pts["h"]],
[pts["x"], pts["y"] + pts["h"]],
]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = CATEGORY_MAP.get(category, "paragraph")
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": id_counter,
"content": {
"text": transcription if category != "table" else "",
"html": transcription if category == "table" else "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for filepath in paths:
print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath))
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
try:
with open(filepath, "rb") as file_data:
file_data = {
"file": ("dummy.pdf", file_data, "")
}
data = {
"invalidate_cache": True,
"premium_mode": True,
"disable_ocr": False
}
response = requests.post(
self.post_url, headers=self.headers, files=file_data, data=data
)
result_data = response.json()
status = result_data["status"]
id_ = result_data["id"]
while status == "PENDING":
get_url = f"{self.get_url}/{id_}"
response = requests.get(get_url, headers=self.headers)
response_json = response.json()
status = response_json["status"]
if status == "SUCCESS":
get_url = f"{self.get_url}/{id_}/result/json"
response = requests.get(get_url, headers=self.headers)
break
time.sleep(1)
result_dict[filename] = response.json()
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict = self.post_process(result_dict)
with open(self.save_path, "w") as f:
json.dump(result_dict, f)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=str, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
llamaparse_inference = LlamaParseInference(
args.save_path,
input_formats=args.input_formats
)
llamaparse_inference.infer(args.data_path)
|