Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
1K - 10K
License:
Delete loading script
Browse files- sms_spam.py +0 -92
sms_spam.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""SMS Spam Collection Data Set"""
|
18 |
-
|
19 |
-
|
20 |
-
import os
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
from datasets.tasks import TextClassification
|
24 |
-
|
25 |
-
|
26 |
-
_CITATION = """\
|
27 |
-
@inproceedings{Almeida2011SpamFiltering,
|
28 |
-
title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},
|
29 |
-
author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},
|
30 |
-
year={2011},
|
31 |
-
booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)",
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research.
|
37 |
-
It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
|
38 |
-
"""
|
39 |
-
|
40 |
-
_DATA_URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
|
41 |
-
|
42 |
-
|
43 |
-
class SmsSpam(datasets.GeneratorBasedBuilder):
|
44 |
-
"""SMS Spam Collection Data Set"""
|
45 |
-
|
46 |
-
BUILDER_CONFIGS = [
|
47 |
-
datasets.BuilderConfig(
|
48 |
-
name="plain_text",
|
49 |
-
version=datasets.Version("1.0.0", ""),
|
50 |
-
description="Plain text import of SMS Spam Collection Data Set",
|
51 |
-
)
|
52 |
-
]
|
53 |
-
|
54 |
-
def _info(self):
|
55 |
-
return datasets.DatasetInfo(
|
56 |
-
description=_DESCRIPTION,
|
57 |
-
features=datasets.Features(
|
58 |
-
{
|
59 |
-
"sms": datasets.Value("string"),
|
60 |
-
"label": datasets.features.ClassLabel(names=["ham", "spam"]),
|
61 |
-
}
|
62 |
-
),
|
63 |
-
supervised_keys=("sms", "label"),
|
64 |
-
homepage="http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection",
|
65 |
-
citation=_CITATION,
|
66 |
-
task_templates=[TextClassification(text_column="sms", label_column="label")],
|
67 |
-
)
|
68 |
-
|
69 |
-
def _split_generators(self, dl_manager):
|
70 |
-
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
71 |
-
return [
|
72 |
-
datasets.SplitGenerator(
|
73 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir, "SMSSpamCollection")}
|
74 |
-
),
|
75 |
-
]
|
76 |
-
|
77 |
-
def _generate_examples(self, filepath):
|
78 |
-
"""This function returns the examples in the raw (text) form."""
|
79 |
-
|
80 |
-
with open(filepath, encoding="utf-8") as sms_file:
|
81 |
-
for idx, line in enumerate(sms_file):
|
82 |
-
fields = line.split("\t")
|
83 |
-
|
84 |
-
if fields[0] == "ham":
|
85 |
-
label = 0
|
86 |
-
else:
|
87 |
-
label = 1
|
88 |
-
|
89 |
-
yield idx, {
|
90 |
-
"sms": fields[1],
|
91 |
-
"label": label,
|
92 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|