|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RedPajama: An Open-Source, Clean-Room 1.2 Trillion Token Dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
RedPajama is a clean-room, fully open-source implementation of the LLaMa dataset. |
|
""" |
|
|
|
_URL_LISTS = { |
|
"arxiv": "urls/arxiv.txt", |
|
"book": "urls/book.txt", |
|
"c4": "urls/c4.txt", |
|
"common_crawl": "urls/common_crawl.txt", |
|
"github": "urls/github.txt", |
|
"stackexchange": "urls/stackexchange.txt", |
|
"wikipedia": "urls/wikipedia.txt", |
|
} |
|
|
|
|
|
class RedPajama1TConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for RedPajama sample.""" |
|
|
|
def __init__(self, *args, subsets, **kwargs): |
|
"""BuilderConfig for RedPajama. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(RedPajama1TConfig, self).__init__(**kwargs) |
|
|
|
self.subsets = subsets |
|
|
|
|
|
class RedPajama1T(datasets.GeneratorBasedBuilder): |
|
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
RedPajama1TConfig( |
|
subsets = list(_URL_LISTS.keys()), |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"meta": datasets.Value("string"), |
|
"red_pajama_subset": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url_lists = dl_manager.download_and_extract({ |
|
subset: _URL_LISTS[subset] for subset in self.config.subsets |
|
}) |
|
|
|
urls = {} |
|
|
|
for subset, url_list in url_lists.items(): |
|
with open(url_list, encoding="utf-8") as f: |
|
urls[subset] = [line.strip() for line in f][:1] |
|
|
|
downloaded_files = dl_manager.download(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs = { |
|
"files": { |
|
subset: downloaded_files[subset] |
|
for subset in self.config.subsets |
|
} |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, files): |
|
"""This function returns the examples in the raw (text) form.""" |
|
key = 0 |
|
for subset in files: |
|
if subset == "common_crawl": |
|
import zstandard as zstd |
|
|
|
for path in files[subset]: |
|
with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f: |
|
for i, row in enumerate(f): |
|
data = json.loads(row) |
|
text = data["text"] |
|
del data["text"] |
|
yield key, { |
|
"text": text, |
|
"meta": json.dumps(data), |
|
"red_pajama_subset": subset, |
|
} |
|
key += 1 |
|
else: |
|
for path in files[subset]: |
|
with open(path, encoding="utf-8") as f: |
|
for i, row in enumerate(f): |
|
data = json.loads(row) |
|
yield key, { |
|
"text": data["text"], |
|
"meta": data["meta"], |
|
"red_pajama_subset": subset, |
|
} |
|
key += 1 |
|
|