--- language: - en license: - other multilinguality: - monolingual size_categories: - 1k<10K task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: TweetNER7 --- # Dataset Card for "tner/tweetner7" ## Dataset Description - **Repository:** [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper) - **Paper:** [https://arxiv.org/abs/2210.03797](https://arxiv.org/abs/2210.03797) - **Dataset:** TweetNER7 - **Domain:** Twitter - **Number of Entity:** 7 ### Dataset Summary This is the official repository of TweetNER7 (["Named Entity Recognition in Twitter: A Dataset and Analysis on Short-Term Temporal Shifts, AACL main conference 2022"](https://arxiv.org/abs/2210.03797)), an NER dataset on Twitter with 7 entity labels. Each instance of TweetNER7 comes with a timestamp which distributes from September 2019 to August 2021. The tweet collection used in TweetNER7 is same as what used in [TweetTopic](https://huggingface.co./datasets/cardiffnlp/tweet_topic_multi). The dataset is integrated in [TweetNLP](https://tweetnlp.org/) too. - Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person` ### Preprocessing We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`. For verified usernames, we replace its display name (or account name) with symbols `{@}`. For example, a tweet ``` Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek ``` is transformed into the following text. ``` Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}} ``` A simple function to format tweet follows below. ```python import re from urlextract import URLExtract extractor = URLExtract() def format_tweet(tweet): # mask web urls urls = extractor.find_urls(tweet) for url in urls: tweet = tweet.replace(url, "{{URL}}") # format twitter account tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet) return tweet target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek""" target_format = format_tweet(target) print(target_format) 'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}' ``` We ask annotators to ignore those special tokens but label the verified users' mentions. ### Data Split | split | number of instances | description | |:------------------|------:|------:| | train_2020 | 4616 | training dataset from September 2019 to August 2020 | | train_2021 | 2495 | training dataset from September 2020 to August 2021 | | train_all | 7111 | combined training dataset of `train_2020` and `train_2021` | | validation_2020 | 576 | validation dataset from September 2019 to August 2020 | | validation_2021 | 310 | validation dataset from September 2020 to August 2021 | | test_2020 | 576 | test dataset from September 2019 to August 2020 | | test_2021 | 2807 | test dataset from September 2020 to August 2021 | | train_random | 4616 | randomly sampled training dataset with the same size as `train_2020` from `train_all` | | validation_random | 576 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` | | extra_2020 | 87880 | extra tweet without annotations from September 2019 to August 2020 | | extra_2021 | 93594 | extra tweet without annotations from September 2020 to August 2021 | For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`. In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`. ## Dataset Structure ### Data Instances An example of `train` looks as follows. ``` { 'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'], 'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14], 'id': '1183344337016381440', 'date': '2019-10-13' } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co./datasets/tner/tweetner7/raw/main/dataset/label.json). ```python { "B-corporation": 0, "B-creative_work": 1, "B-event": 2, "B-group": 3, "B-location": 4, "B-person": 5, "B-product": 6, "I-corporation": 7, "I-creative_work": 8, "I-event": 9, "I-group": 10, "I-location": 11, "I-person": 12, "I-product": 13, "O": 14 } ``` ## Models See full evaluation metrics [here](https://github.com/asahi417/tner/blob/master/MODEL_CARD.md#models-for-tweetner7). ### Main Models | Model (link) | Data | Language Model | Micro F1 (2021) | Macro F1 (2021) | |:--------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|------------------:|------------------:| | [`tner/roberta-large-tweetner7-all`](https://huggingface.co./tner/roberta-large-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 65.75 | 61.25 | | [`tner/roberta-base-tweetner7-all`](https://huggingface.co./tner/roberta-base-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co./roberta-base) | 65.16 | 60.81 | | [`tner/twitter-roberta-base-2019-90m-tweetner7-all`](https://huggingface.co./tner/twitter-roberta-base-2019-90m-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co./cardiffnlp/twitter-roberta-base-2019-90m) | 65.68 | 61 | | [`tner/twitter-roberta-base-dec2020-tweetner7-all`](https://huggingface.co./tner/twitter-roberta-base-dec2020-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2020) | 65.26 | 60.7 | | [`tner/bertweet-large-tweetner7-all`](https://huggingface.co./tner/bertweet-large-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 66.46 | 61.87 | | [`tner/bertweet-base-tweetner7-all`](https://huggingface.co./tner/bertweet-base-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co./vinai/bertweet-base) | 65.36 | 60.52 | | [`tner/bert-large-tweetner7-all`](https://huggingface.co./tner/bert-large-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co./bert-large) | 63.58 | 59 | | [`tner/bert-base-tweetner7-all`](https://huggingface.co./tner/bert-base-tweetner7-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co./bert-base) | 62.3 | 57.59 | | [`tner/roberta-large-tweetner7-continuous`](https://huggingface.co./tner/roberta-large-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 66.02 | 60.9 | | [`tner/roberta-base-tweetner7-continuous`](https://huggingface.co./tner/roberta-base-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co./roberta-base) | 65.47 | 60.01 | | [`tner/twitter-roberta-base-2019-90m-tweetner7-continuous`](https://huggingface.co./tner/twitter-roberta-base-2019-90m-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co./cardiffnlp/twitter-roberta-base-2019-90m) | 65.87 | 61.07 | | [`tner/twitter-roberta-base-dec2020-tweetner7-continuous`](https://huggingface.co./tner/twitter-roberta-base-dec2020-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2020) | 65.51 | 60.57 | | [`tner/bertweet-large-tweetner7-continuous`](https://huggingface.co./tner/bertweet-large-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 66.41 | 61.66 | | [`tner/bertweet-base-tweetner7-continuous`](https://huggingface.co./tner/bertweet-base-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co./vinai/bertweet-base) | 65.84 | 61.02 | | [`tner/bert-large-tweetner7-continuous`](https://huggingface.co./tner/bert-large-tweetner7-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co./bert-large) | 63.2 | 57.67 | | [`tner/roberta-large-tweetner7-2021`](https://huggingface.co./tner/roberta-large-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 64.05 | 59.11 | | [`tner/roberta-base-tweetner7-2021`](https://huggingface.co./tner/roberta-base-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co./roberta-base) | 61.76 | 57 | | [`tner/twitter-roberta-base-dec2020-tweetner7-2021`](https://huggingface.co./tner/twitter-roberta-base-dec2020-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2020) | 63.98 | 58.91 | | [`tner/bertweet-large-tweetner7-2021`](https://huggingface.co./tner/bertweet-large-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 62.9 | 58.13 | | [`tner/bertweet-base-tweetner7-2021`](https://huggingface.co./tner/bertweet-base-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co./vinai/bertweet-base) | 63.09 | 57.35 | | [`tner/bert-large-tweetner7-2021`](https://huggingface.co./tner/bert-large-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co./bert-large) | 59.75 | 53.93 | | [`tner/bert-base-tweetner7-2021`](https://huggingface.co./tner/bert-base-tweetner7-2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co./bert-base) | 60.67 | 55.5 | | [`tner/roberta-large-tweetner7-2020`](https://huggingface.co./tner/roberta-large-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 64.76 | 60 | | [`tner/roberta-base-tweetner7-2020`](https://huggingface.co./tner/roberta-base-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co./roberta-base) | 64.21 | 59.11 | | [`tner/twitter-roberta-base-2019-90m-tweetner7-2020`](https://huggingface.co./tner/twitter-roberta-base-2019-90m-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co./cardiffnlp/twitter-roberta-base-2019-90m) | 64.28 | 59.31 | | [`tner/twitter-roberta-base-dec2020-tweetner7-2020`](https://huggingface.co./tner/twitter-roberta-base-dec2020-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2020) | 62.87 | 58.26 | | [`tner/bertweet-large-tweetner7-2020`](https://huggingface.co./tner/bertweet-large-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 64.01 | 59.47 | | [`tner/bertweet-base-tweetner7-2020`](https://huggingface.co./tner/bertweet-base-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co./vinai/bertweet-base) | 64.06 | 59.44 | | [`tner/bert-large-tweetner7-2020`](https://huggingface.co./tner/bert-large-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co./bert-large) | 61.43 | 56.14 | | [`tner/bert-base-tweetner7-2020`](https://huggingface.co./tner/bert-base-tweetner7-2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co./bert-base) | 60.09 | 54.67 | Model description follows below. * Model with suffix `-all`: Model fine-tuned on `train_all` and validated on `validation_2021`. * Model with suffix `-continuous`: Model fine-tuned on `train_2021` continuously after fine-tuning on `train_2020` and validated on `validation_2021`. * Model with suffix `-2021`: Model fine-tuned only on `train_2021` and validated on `validation_2021`. * Model with suffix `-2020`: Model fine-tuned only on `train_2021` and validated on `validation_2020`. ### Sub Models (used in ablation study) - Model fine-tuned only on `train_random` and validated on `validation_2020`. | Model (link) | Data | Language Model | Micro F1 (2021) | Macro F1 (2021) | |:------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|------------------:|------------------:| | [`tner/roberta-large-tweetner7-random`](https://huggingface.co./tner/roberta-large-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 66.33 | 60.96 | | [`tner/twitter-roberta-base-2019-90m-tweetner7-random`](https://huggingface.co./tner/twitter-roberta-base-2019-90m-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co./cardiffnlp/twitter-roberta-base-2019-90m) | 63.29 | 58.5 | | [`tner/roberta-base-tweetner7-random`](https://huggingface.co./tner/roberta-base-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co./roberta-base) | 64.04 | 59.23 | | [`tner/twitter-roberta-base-dec2020-tweetner7-random`](https://huggingface.co./tner/twitter-roberta-base-dec2020-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2020) | 64.72 | 59.97 | | [`tner/bertweet-large-tweetner7-random`](https://huggingface.co./tner/bertweet-large-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co./cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 64.86 | 60.49 | | [`tner/bertweet-base-tweetner7-random`](https://huggingface.co./tner/bertweet-base-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co./vinai/bertweet-base) | 65.55 | 59.58 | | [`tner/bert-large-tweetner7-random`](https://huggingface.co./tner/bert-large-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co./bert-large) | 62.39 | 57.54 | | [`tner/bert-base-tweetner7-random`](https://huggingface.co./tner/bert-base-tweetner7-random) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co./bert-base) | 60.91 | 55.92 | - Model fine-tuned on the self-labeled dataset on `extra_{2020,2021}` and validated on `validation_2020`. | Model (link) | Data | Language Model | Micro F1 (2021) | Macro F1 (2021) | |:----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:--------------------------------------------------------|------------------:|------------------:| | [`tner/roberta-large-tweetner7-selflabel2020`](https://huggingface.co./tner/roberta-large-tweetner7-selflabel2020) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 64.56 | 59.63 | | [`tner/roberta-large-tweetner7-selflabel2021`](https://huggingface.co./tner/roberta-large-tweetner7-selflabel2021) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 64.6 | 59.45 | | [`tner/roberta-large-tweetner7-2020-selflabel2020-all`](https://huggingface.co./tner/roberta-large-tweetner7-2020-selflabel2020-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 65.46 | 60.39 | | [`tner/roberta-large-tweetner7-2020-selflabel2021-all`](https://huggingface.co./tner/roberta-large-tweetner7-2020-selflabel2021-all) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 64.52 | 59.45 | | [`tner/roberta-large-tweetner7-selflabel2020-continuous`](https://huggingface.co./tner/roberta-large-tweetner7-selflabel2020-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 65.15 | 60.23 | | [`tner/roberta-large-tweetner7-selflabel2021-continuous`](https://huggingface.co./tner/roberta-large-tweetner7-selflabel2021-continuous) | [`tweetner7`](https://huggingface.co./datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co./roberta-large) | 64.48 | 59.41 | Model description follows below. * Model with suffix `-self2020`: Fine-tuning on the self-annotated data of `extra_2020` split of [tweetner7](https://huggingface.co./datasets/tner/tweetner7). * Model with suffix `-self2021`: Fine-tuning on the self-annotated data of `extra_2021` split of [tweetner7](https://huggingface.co./datasets/tner/tweetner7). * Model with suffix `-2020-self2020-all`: Fine-tuning on the self-annotated data of `extra_2020` split of [tweetner7](https://huggingface.co./datasets/tner/tweetner7). Combined training dataset of `extra_2020` and `train_2020`. * Model with suffix `-2020-self2021-all`: Fine-tuning on the self-annotated data of `extra_2021` split of [tweetner7](https://huggingface.co./datasets/tner/tweetner7). Combined training dataset of `extra_2021` and `train_2020`. * Model with suffix `-2020-self2020-continuous`: Fine-tuning on the self-annotated data of `extra_2020` split of [tweetner7](https://huggingface.co./datasets/tner/tweetner7). Fine-tuning on `train_2020` and continuing fine-tuning on `extra_2020`. * Model with suffix `-2020-self2021-continuous`: Fine-tuning on the self-annotated data of `extra_2021` split of [tweetner7](https://huggingface.co./datasets/tner/tweetner7). Fine-tuning on `train_2020` and continuing fine-tuning on `extra_2020`. ### Reproduce Experimental Result To reproduce the experimental result on our AACL paper, please see the repository [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper). ## Citation Information ``` @inproceedings{ushio-etal-2022-tweet, title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts", author = "Ushio, Asahi and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco. and Camacho-Collados, Jose", booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing", month = nov, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", } ```