Datasets:
File size: 10,680 Bytes
9c8827c aa43e52 9c8827c aa43e52 bf10be8 9c8827c 56454fa 9c8827c 4556e78 2f1a5d7 aa57cc1 222dd03 aa57cc1 222dd03 aa57cc1 222dd03 aa57cc1 222dd03 aa57cc1 9c8827c 4556e78 9c8827c a4e21f8 9c8827c bc53572 9c8827c bc53572 9c8827c a4e21f8 aa57cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
---
annotations_creators:
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
language:
- zh
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: kdconv
pretty_name: Knowledge-driven Conversation
dataset_info:
- config_name: travel_dialogues
features:
- name: messages
sequence:
- name: message
dtype: string
- name: attrs
sequence:
- name: attrname
dtype: string
- name: attrvalue
dtype: string
- name: name
dtype: string
- name: name
dtype: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 3241550
num_examples: 1200
- name: test
num_bytes: 793883
num_examples: 150
- name: validation
num_bytes: 617177
num_examples: 150
download_size: 11037768
dataset_size: 4652610
- config_name: travel_knowledge_base
features:
- name: head_entity
dtype: string
- name: kb_triplets
sequence:
sequence: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 1517024
num_examples: 1154
download_size: 11037768
dataset_size: 1517024
- config_name: music_dialogues
features:
- name: messages
sequence:
- name: message
dtype: string
- name: attrs
sequence:
- name: attrname
dtype: string
- name: attrvalue
dtype: string
- name: name
dtype: string
- name: name
dtype: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 3006192
num_examples: 1200
- name: test
num_bytes: 801012
num_examples: 150
- name: validation
num_bytes: 633905
num_examples: 150
download_size: 11037768
dataset_size: 4441109
- config_name: music_knowledge_base
features:
- name: head_entity
dtype: string
- name: kb_triplets
sequence:
sequence: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 5980643
num_examples: 4441
download_size: 11037768
dataset_size: 5980643
- config_name: film_dialogues
features:
- name: messages
sequence:
- name: message
dtype: string
- name: attrs
sequence:
- name: attrname
dtype: string
- name: attrvalue
dtype: string
- name: name
dtype: string
- name: name
dtype: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 4867659
num_examples: 1200
- name: test
num_bytes: 956995
num_examples: 150
- name: validation
num_bytes: 884232
num_examples: 150
download_size: 11037768
dataset_size: 6708886
- config_name: film_knowledge_base
features:
- name: head_entity
dtype: string
- name: kb_triplets
sequence:
sequence: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 10500882
num_examples: 8090
download_size: 11037768
dataset_size: 10500882
- config_name: all_dialogues
features:
- name: messages
sequence:
- name: message
dtype: string
- name: attrs
sequence:
- name: attrname
dtype: string
- name: attrvalue
dtype: string
- name: name
dtype: string
- name: name
dtype: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 11115313
num_examples: 3600
- name: test
num_bytes: 2551802
num_examples: 450
- name: validation
num_bytes: 2135226
num_examples: 450
download_size: 11037768
dataset_size: 15802341
- config_name: all_knowledge_base
features:
- name: head_entity
dtype: string
- name: kb_triplets
sequence:
sequence: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 17998529
num_examples: 13685
download_size: 11037768
dataset_size: 17998529
---
# Dataset Card for KdConv
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Github](https://github.com/thu-coai/KdConv)
- **Paper:** [{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation](https://www.aclweb.org/anthology/2020.acl-main.635.pdf)
### Dataset Summary
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn
conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel),
and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related
topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer
learning and domain adaptation.
### Supported Tasks and Leaderboards
This dataset can be leveraged for dialogue modelling tasks involving multi-turn and Knowledge base setup.
### Languages
This dataset has only Chinese Language.
## Dataset Structure
### Data Instances
Each data instance is a multi-turn conversation between 2 people with annotated knowledge base data used while talking
, e.g.:
```
{
"messages": [
{
"message": "对《我喜欢上你时的内心活动》这首歌有了解吗?"
},
{
"attrs": [
{
"attrname": "Information",
"attrvalue": "《我喜欢上你时的内心活动》是由韩寒填词,陈光荣作曲,陈绮贞演唱的歌曲,作为电影《喜欢你》的主题曲于2017年4月10日首发。2018年,该曲先后提名第37届香港电影金像奖最佳原创电影歌曲奖、第7届阿比鹿音乐奖流行单曲奖。",
"name": "我喜欢上你时的内心活动"
}
],
"message": "有些了解,是电影《喜欢你》的主题曲。"
},
...
{
"attrs": [
{
"attrname": "代表作品",
"attrvalue": "旅行的意义",
"name": "陈绮贞"
},
{
"attrname": "代表作品",
"attrvalue": "时间的歌",
"name": "陈绮贞"
}
],
"message": "我还知道《旅行的意义》与《时间的歌》,都算是她的代表作。"
},
{
"message": "好,有时间我找出来听听。"
}
],
"name": "我喜欢上你时的内心活动"
}
```
The corresponding entries in Knowledge base is a dictionary with list of knowledge base triplets (head entity
, relationship, tail entity), e.g.:
```
"忽然之间": [
[
"忽然之间",
"Information",
"《忽然之间》是歌手 莫文蔚演唱的歌曲,由 周耀辉, 李卓雄填词, 林健华谱曲,收录在莫文蔚1999年发行专辑《 就是莫文蔚》里。"
],
[
"忽然之间",
"谱曲",
"林健华"
]
...
]
```
### Data Fields
Conversation data fields:
- `name`: the starting topic (entity) of the conversation
- `domain`: the domain this sample belongs to. Categorical value among `{travel, film, music}`
- `messages`: list of all the turns in the dialogue. For each turn:
- `message`: the utterance
- `attrs`: list of knowledge graph triplets referred by the utterance. For each triplet:
- `name`: the head entity
- `attrname`: the relation
- `attrvalue`: the tail entity
Knowledge Base data fields:
- `head_entity`: the head entity
- `kb_triplets`: list of corresponding triplets
- `domain`: the domain this sample belongs to. Categorical value among `{travel, film, music}`
### Data Splits
The conversation dataset is split into a `train`, `validation`, and `test` split with the following sizes:
| | train | validation | test |
|--------|------:|-----------:|-----:|
| travel | 1200 | 1200 | 1200 |
| film | 1200 | 150 | 150 |
| music | 1200 | 150 | 150 |
| all | 3600 | 450 | 450 |
The Knowledge base dataset is having only train split with following sizes:
| | train |
|--------|------:|
| travel | 1154 |
| film | 8090 |
| music | 4441 |
| all | 13685 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Apache License 2.0
### Citation Information
```
@inproceedings{zhou-etal-2020-kdconv,
title = "{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation",
author = "Zhou, Hao and
Zheng, Chujie and
Huang, Kaili and
Huang, Minlie and
Zhu, Xiaoyan",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.635",
doi = "10.18653/v1/2020.acl-main.635",
pages = "7098--7108",
}
```
### Contributions
Thanks to [@pacman100](https://github.com/pacman100) for adding this dataset. |