Datasets:

Languages:
Chinese
License:
File size: 10,680 Bytes
9c8827c
 
 
 
 
 
aa43e52
9c8827c
aa43e52
bf10be8
9c8827c
 
 
 
 
 
 
56454fa
 
9c8827c
 
4556e78
2f1a5d7
aa57cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222dd03
 
 
aa57cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222dd03
 
 
aa57cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222dd03
 
 
aa57cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222dd03
 
 
aa57cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8827c
 
 
 
 
 
 
4556e78
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e21f8
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc53572
 
 
 
 
 
9c8827c
 
 
bc53572
 
 
 
 
 
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e21f8
 
 
aa57cc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
---
annotations_creators:
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
language:
- zh
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: kdconv
pretty_name: Knowledge-driven Conversation
dataset_info:
- config_name: travel_dialogues
  features:
  - name: messages
    sequence:
    - name: message
      dtype: string
    - name: attrs
      sequence:
      - name: attrname
        dtype: string
      - name: attrvalue
        dtype: string
      - name: name
        dtype: string
  - name: name
    dtype: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 3241550
    num_examples: 1200
  - name: test
    num_bytes: 793883
    num_examples: 150
  - name: validation
    num_bytes: 617177
    num_examples: 150
  download_size: 11037768
  dataset_size: 4652610
- config_name: travel_knowledge_base
  features:
  - name: head_entity
    dtype: string
  - name: kb_triplets
    sequence:
      sequence: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 1517024
    num_examples: 1154
  download_size: 11037768
  dataset_size: 1517024
- config_name: music_dialogues
  features:
  - name: messages
    sequence:
    - name: message
      dtype: string
    - name: attrs
      sequence:
      - name: attrname
        dtype: string
      - name: attrvalue
        dtype: string
      - name: name
        dtype: string
  - name: name
    dtype: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 3006192
    num_examples: 1200
  - name: test
    num_bytes: 801012
    num_examples: 150
  - name: validation
    num_bytes: 633905
    num_examples: 150
  download_size: 11037768
  dataset_size: 4441109
- config_name: music_knowledge_base
  features:
  - name: head_entity
    dtype: string
  - name: kb_triplets
    sequence:
      sequence: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 5980643
    num_examples: 4441
  download_size: 11037768
  dataset_size: 5980643
- config_name: film_dialogues
  features:
  - name: messages
    sequence:
    - name: message
      dtype: string
    - name: attrs
      sequence:
      - name: attrname
        dtype: string
      - name: attrvalue
        dtype: string
      - name: name
        dtype: string
  - name: name
    dtype: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 4867659
    num_examples: 1200
  - name: test
    num_bytes: 956995
    num_examples: 150
  - name: validation
    num_bytes: 884232
    num_examples: 150
  download_size: 11037768
  dataset_size: 6708886
- config_name: film_knowledge_base
  features:
  - name: head_entity
    dtype: string
  - name: kb_triplets
    sequence:
      sequence: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 10500882
    num_examples: 8090
  download_size: 11037768
  dataset_size: 10500882
- config_name: all_dialogues
  features:
  - name: messages
    sequence:
    - name: message
      dtype: string
    - name: attrs
      sequence:
      - name: attrname
        dtype: string
      - name: attrvalue
        dtype: string
      - name: name
        dtype: string
  - name: name
    dtype: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 11115313
    num_examples: 3600
  - name: test
    num_bytes: 2551802
    num_examples: 450
  - name: validation
    num_bytes: 2135226
    num_examples: 450
  download_size: 11037768
  dataset_size: 15802341
- config_name: all_knowledge_base
  features:
  - name: head_entity
    dtype: string
  - name: kb_triplets
    sequence:
      sequence: string
  - name: domain
    dtype: string
  splits:
  - name: train
    num_bytes: 17998529
    num_examples: 13685
  download_size: 11037768
  dataset_size: 17998529
---

# Dataset Card for KdConv

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Github](https://github.com/thu-coai/KdConv)
- **Paper:** [{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation](https://www.aclweb.org/anthology/2020.acl-main.635.pdf)

### Dataset Summary

KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn 
conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), 
and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related 
topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer 
learning and domain adaptation.

### Supported Tasks and Leaderboards

This dataset can be leveraged for dialogue modelling tasks involving multi-turn and Knowledge base setup.

### Languages

This dataset has only Chinese Language.

## Dataset Structure

### Data Instances

Each data instance is a multi-turn conversation between 2 people with annotated knowledge base data used while talking
, e.g.:
```
{
  "messages": [
    {
      "message": "对《我喜欢上你时的内心活动》这首歌有了解吗?"
    },
    {
      "attrs": [
        {
          "attrname": "Information",
          "attrvalue": "《我喜欢上你时的内心活动》是由韩寒填词,陈光荣作曲,陈绮贞演唱的歌曲,作为电影《喜欢你》的主题曲于2017年4月10日首发。2018年,该曲先后提名第37届香港电影金像奖最佳原创电影歌曲奖、第7届阿比鹿音乐奖流行单曲奖。",
          "name": "我喜欢上你时的内心活动"
        }
      ],
      "message": "有些了解,是电影《喜欢你》的主题曲。"
    },
    ...
    {
      "attrs": [
        {
          "attrname": "代表作品",
          "attrvalue": "旅行的意义",
          "name": "陈绮贞"
        },
        {
          "attrname": "代表作品",
          "attrvalue": "时间的歌",
          "name": "陈绮贞"
        }
      ],
      "message": "我还知道《旅行的意义》与《时间的歌》,都算是她的代表作。"
    },
    {
      "message": "好,有时间我找出来听听。"
    }
  ],
  "name": "我喜欢上你时的内心活动"
}
```

The corresponding entries in Knowledge base is a dictionary with list of knowledge base triplets (head entity
, relationship, tail entity), e.g.:
```
"忽然之间": [
  [
    "忽然之间",
    "Information",
    "《忽然之间》是歌手 莫文蔚演唱的歌曲,由 周耀辉, 李卓雄填词, 林健华谱曲,收录在莫文蔚1999年发行专辑《 就是莫文蔚》里。"
  ],
  [
    "忽然之间",
    "谱曲",
    "林健华"
  ]
  ...
]
``` 

### Data Fields

Conversation data fields:
- `name`: the starting topic (entity) of the conversation
- `domain`: the domain this sample belongs to. Categorical value among `{travel, film, music}`
- `messages`:  list of all the turns in the dialogue. For each turn:
    - `message`: the utterance
    - `attrs`: list of knowledge graph triplets referred by the utterance. For each triplet:
        - `name`: the head entity
        - `attrname`: the relation
        - `attrvalue`: the tail entity

Knowledge Base data fields:
- `head_entity`: the head entity
- `kb_triplets`: list of corresponding triplets
- `domain`: the domain this sample belongs to. Categorical value among `{travel, film, music}`

### Data Splits

The conversation dataset is split into a `train`, `validation`, and `test` split with the following sizes:

|        | train | validation | test |
|--------|------:|-----------:|-----:|
| travel |  1200 |       1200 | 1200 |
| film   |  1200 |        150 |  150 |
| music  |  1200 |        150 |  150 |
| all    |  3600 |        450 |  450 |

The Knowledge base dataset is having only train split with following sizes:

|        | train |
|--------|------:|
| travel |  1154 | 
| film   |  8090 | 
| music  |  4441 | 
| all    | 13685 | 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Apache License 2.0

### Citation Information
```
@inproceedings{zhou-etal-2020-kdconv,
    title = "{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation",
    author = "Zhou, Hao  and
      Zheng, Chujie  and
      Huang, Kaili  and
      Huang, Minlie  and
      Zhu, Xiaoyan",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.635",
    doi = "10.18653/v1/2020.acl-main.635",
    pages = "7098--7108",
}
```
### Contributions

Thanks to [@pacman100](https://github.com/pacman100) for adding this dataset.