--- dataset_info: features: - name: label dtype: class_label: names: 0: '0' 1: '1' 2: '2' 3: '3' 4: '4' 5: '5' 6: '6' 7: '7' 8: '8' 9: '9' 10: a 11: b 12: c 13: d 14: e 15: f - name: latent sequence: sequence: sequence: float32 splits: - name: test num_bytes: 106824288 num_examples: 6312 - name: train num_bytes: 2029441460 num_examples: 119915 download_size: 2082210019 dataset_size: 2136265748 --- # Dataset Card for "latent_lsun_church_256px" This is derived from https://huggingface.co./datasets/tglcourse/lsun_church_train Each image is cropped to 256px square and encoded to a 4x32x32 latent representation using the same VAE as that employed by Stable Diffusion Decoding ```python from diffusers import AutoencoderKL from datasets import load_dataset from PIL import Image import numpy as np import torch # load the dataset dataset = load_dataset('tglcourse/latent_lsun_church_256px') # Load the VAE (requires access - see repo model card for info) vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") latent = torch.tensor([dataset['train'][0]['latent']]) # To tensor (bs, 4, 32, 32) latent = (1 / 0.18215) * latent # Scale to match SD implementation with torch.no_grad(): image = vae.decode(latent).sample[0] # Decode image = (image / 2 + 0.5).clamp(0, 1) # To (0, 1) image = image.detach().cpu().permute(1, 2, 0).numpy() # To numpy, channels lsat image = (image * 255).round().astype("uint8") # (0, 255) and type uint8 image = Image.fromarray(image) # To PIL image # The resulting PIL image ```